trong kì thi tuyển sinh vào 10 năm học 2023-2024, số học sinh thi vào trường THTP a bằng 2/3 số học sinh thì vào trường THPT b.Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi đúng 24 thí sinh.Hỏi số thí sinh vào mỗi trường là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2x+cos^2x=1\)
=>\(cos^2x=1-\left(\dfrac{2}{3}\right)^2=1-\dfrac{4}{9}=\dfrac{5}{9}\)
mà \(cosx>0\)(Vì \(x\in\left(0;\dfrac{\Omega}{2}\right)\))
nên \(cosx=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)
a: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét ΔAHD có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHD cân tại A
ΔAHD cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAD
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHE cân tại A
ΔAHE cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAE
\(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}\)
\(=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)\)
\(=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
Vì khoảng cách giữa n+10 và n+15 là 5
và 5 là số lẻ
nên chắc chắn trong hai số n+10;n+15 sẽ có một số chẵn và một số lẻ
=>(n+10)(n+15) chia hết cho 2
\(3^x=81\cdot3^y\)
=>\(3^x=3^4\cdot3^y=3^{y+4}\)
=>x=y+4
\(2^x\cdot2^y=2^{16}\)
=>x+y=16
=>y+4+y=16
=>2y=12
=>y=6
x=y+4=6+4=10
2x+y=20+6=26
A = 21132000 - 21112000
A = (21134)500 - \(\overline{..1}\)
A = \(\overline{..1}\)500 - \(\overline{..1}\)
A = \(\overline{..0}\) ⋮ 2 va 5 (đpcm0
a.
Do \(AC\perp BD\Rightarrow E\) là trung điểm BD
\(\Rightarrow OA\) là trung trực đoan BD \(\Rightarrow AB=AD\)
\(\widehat{DOA}=\widehat{COI}\) (đối đỉnh) \(\Rightarrow sđ\stackrel\frown{AD}=sđ\stackrel\frown{IC}\Rightarrow AD=IC\)
\(\Rightarrow AB=IC\)
b.
Do AC là đường kính nên \(\widehat{ABC}=\widehat{ADC}=90^0\) (nt chắn nửa đường tròn)
\(\Rightarrow\) Các tam giác ABC và ADC lần lượt vuông tại B và D
Áp dụng định lý Pitago:
\(\left(EA^2+EB^2\right)+\left(EC^2+ED^2\right)=AB^2+CD^2=AD^2+CD^2=AC^2=4R^2\)
c.
Áp dụng Pitago trong tam giác vuông OBE:
\(EB^2=OB^2-OE^2=R^2-\left(\dfrac{2R}{3}\right)^2=\dfrac{5R^2}{9}\Rightarrow BE=\dfrac{R\sqrt{5}}{3}\)
Trong tam giác vuông ABE:
\(AB^2=AE^2+EB^2=\left(R-\dfrac{2R}{3}\right)^2+\dfrac{5R^2}{9}=\dfrac{2R^2}{3}\)
\(\Rightarrow IC^2=AD^2=AB^2=\dfrac{2R^2}{3}\Rightarrow IC=AD=\dfrac{R\sqrt{6}}{3}\)
Trong tam giác vuông ADC:
\(DC=\sqrt{AC^2-AD^2}=\sqrt{\left(2R\right)^2-\dfrac{2R^2}{3}}=\dfrac{R\sqrt{30}}{3}\)
\(BD=2BE=\dfrac{2R\sqrt{5}}{3}\)
\(\Rightarrow IB=\sqrt{ID^2-BD^2}=\sqrt{\left(2R\right)^2-\left(\dfrac{2R\sqrt{5}}{3}\right)^2}=\dfrac{4R}{3}\)
ID là đường kính nên các tam giác IBD và ICD vuông tại B và D
\(S_{ABICD}=S_{\Delta ABD}+S_{\Delta IBD}+S_{\Delta ICD}\)
\(=\dfrac{1}{2}AE.BD+\dfrac{1}{2}IB.BD+\dfrac{1}{2}IC.DC=\dfrac{8R^2\sqrt{5}}{9}\)
a) Ta có:
\(48=2^4.3;\\ 60=2^2.3.5\\ \RightarrowƯCLN\left(48,60\right)=2^2.3=4.3=12\)
b) Ta có:
\(18=2.3^2;\\ 54=2.3^3\\ \Rightarrow BCNN\left(18,54\right)=2.3^3=2.27=54\)
A = n3 + 3n2 + 2n
A = n(n2 + 3n + 2)
A = n[(n2 + n) + (2n + 2)]
A = n[n(n + 1) + 2(n + 1)]
A = n(n + 1)(n + 2)
+ Nếu n ⋮ 3
⇒ A ⋮ 3; n và n + 1 là hai số tự nhiên liên tiếp nên sẽ có một số là số lẻ, một số là số chẵn nên n(n + 1) ⋮ 2 ⇒ A ⋮ 2
⇒ A \(\in\) B(2 ; 3); 2= 2; 3 = 3 ⇒ BCNN(2; 3) = 6 ⇒ A \(\in\) B(6) ⇒ A ⋮ 6
+ Nếu n không chia hết cho 3 thì n = 3k + 1 hoặc n = 3k + 2 ta có:
+ n = 3k + 1 thì n + 2 = 3k + 1 + 2 = 3k + ( 1 + 2) = 3k + 3 ⋮ 3
+Nếu n = 3k + 2 thì n + 1 = 3k + 2 + 1 = 3k + ( 2 + 1) = 3k + 3 ⋮ 3
Chứng minh tương tự với trường hợp A ⋮ 3 ở trên ta có A là bội của 6 hay A ⋮ 6
Vậy A ⋮ 6 ∀ n \(\in\) Z+
Vận dụng kiến thức đã học hãy so sánh kết quả, ý nghĩa của cuộc cách mạng, tư sản anh, chiến tranh 13 thuộc địa Anh ở bắc mỹ ,anh