K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)

\(x=\sqrt{y^3+3}-y-\sqrt{x^3+3}\)

Tương tự ta có\(y=\sqrt{x^2+3}-y-\sqrt{x^2-3}\)

Thay x + y ta đc -x - y 

=> 2x + 2y = 0

=> x + y = 0

12 tháng 12 2017

hình như chưa đúng lắm @Lê Minh Tú

11 tháng 12 2017

bài này easy thôi:

Áp dụng BĐT schwarz ta có:

\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ac+a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)}.\)

Mặt khác \(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right).\)

nên ta có:\(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=a^2+b^2+c^2.\)

Mà ta có BĐT cơ bản là:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2.\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}.\)

Do đó:\(VT\ge a^2+b^2+c^2\ge\frac{1}{3}.\)

Vậy Min là \(\frac{1}{3}.\)Dấu = xảy ra khi \(a=b=c=\frac{1}{3}.\)

10 tháng 12 2017

ta lấy phương trình (1) trừ phương trình (2) ta được :

     x  +  y   -  xy  =   1

  \(\Leftrightarrow\)x  +  y   -  xy  - 1  =  0 

\(\Leftrightarrow\)x  (    1   -   y  )   -  (1  -  y)  =  0

\(\Leftrightarrow\)(1  -   y )(x -  1)  =  0

\(\Leftrightarrow\)\(\orbr{\begin{cases}1-y=0\\x-1=0\end{cases}}\)

Với \(1-y=0\Rightarrow y=1\Rightarrow x^2+1+x=7\Rightarrow x^2+x-6=0\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Với \(x-1=0\Rightarrow x=1\Rightarrow1+y^2+y=7\Rightarrow y^2+y-6=0\Rightarrow\orbr{\begin{cases}y=-3\\y=2\end{cases}}\)

Vậy ta có các cặp nghiệm (x ; y) tương ứng là  (1; -3) , (1; 2) ; (2; 1) , (-3; 1)

11 tháng 12 2017

\(\frac{1}{x+y}\le\frac{x+y}{4xy}\)\(\Leftrightarrow\left(x+y\right)^2\ge4xy.\)\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)\(\Rightarrowđpcm\)

21 tháng 3 2019

AM-GM:\(\frac{1}{4x}+\frac{1}{4y}\ge\frac{\left(1+1\right)^2}{4\left(x+y\right)}=\frac{1}{x+y}\)hay\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\left(dpcm\right)\)