Cho A= x+5/x-2với x không thuộc 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
\(\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{7}=\dfrac{19}{8}\\ \Rightarrow\left(2x-\dfrac{1}{2}\right)^2=\dfrac{19}{8}-\dfrac{3}{7}\\ \Rightarrow\left(2x-\dfrac{1}{2}\right)^2=\dfrac{109}{56}\\ \Rightarrow\left(2x-\dfrac{1}{2}\right)^2=\left(\sqrt{\dfrac{109}{56}}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{2}=\sqrt{\dfrac{109}{56}}\\2x-\dfrac{1}{2}=-\sqrt{\dfrac{109}{56}}\end{matrix}\right.\)
Bạn xem lại đề, số lớn quá ;-;.
Vì Ot là tia phân giác của \(\widehat{xOy}\) nên \(\widehat{xOt}=\widehat{tOy}=\dfrac{\widehat{xOy}}{2}=\dfrac{80^o}{2}=40^o\)
a) Số tiền nhà thầu nhận xây ngôi nhà sau khi thỏa thuận là:
360000000.(100% - 2,5%) = 351000000 (đồng)
b) Chi phí lúc đầu của khu chăn nuôi nhà thầu đưa ra là:
975000000.(100% + 2,5%) = 99937500 (đồng)
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
B = \(\dfrac{1}{2^3}\) + \(\dfrac{2}{3^3}\) + \(\dfrac{3}{4^3}\)+...+ \(\dfrac{n-1}{n^3}\) (n > 2)
Vì n > 2 ⇒ B > 0 (1)
\(\dfrac{1}{2^3}\) < \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{2}{3^3}\) < \(\dfrac{3}{3^3}\) = \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{3}{4^3}\) < \(\dfrac{4}{4^3}\) = \(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
..................................................
\(\dfrac{n-1}{n^3}\)<\(\dfrac{n^{ }}{n^3}\) = \(\dfrac{1}{n^2}\) < \(\dfrac{1}{\left(n-1\right).n}\) = \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\)
Cộng vế với vế ta có:
B < 1 - \(\dfrac{1}{n}\) < 1 (2)
Kết hợp (1) và(2) ta có: 0 < B < 1
Vậy B không phải là số tự nhiên (đpcm)
a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)
- \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) < \(x\) < - \(\dfrac{13}{5}\): \(\dfrac{21}{15}\)
- \(\dfrac{46}{3}\) < \(x\) < - \(\dfrac{13}{7}\)
\(x\) \(\in\) {-15; -14;-13;..; -2}
a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)
Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)
Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)
Suy ra \(-15\le x\le-2\), x ϵ Z
b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)
Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)
Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)
Suy ra \(-1\le x\le0\), x ϵ Z
Ai làm được cho nhiều sao đang cần gấp 🌟⭐️
Yêu cầu của đề là gì vậy em.