K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài này đơn giản mà bạn 

Giả sử rằng trong các số \(a_1;a_2;...;a_n\)không có số nào lớn hơn hoặc bằng a khi đó \(a_1+a_2+...+a_n< a+a+...+a\)(n số hạng a )

\(\Rightarrow a_1+a_2+a_3+...+a_n< a\cdot n\left(1\right)\)

Mặt khác theo như giả thuyết ta có \(a=\frac{a_1+a_2+...+a_n}{n}\Rightarrow a\cdot n=a_1+a_2+...+a_n\left(2\right)\)

Ta thấy điều (1) và (2) trái ngược nhau nên điều giải sử lúc ban đầu là sai. 

Vậy trong các số trên sẽ có ít nhất một số lớn hơn hoặc bằng a

Giả sử m là đường thẳng song song với b và cắt qua a. Vì m song song với b mà b song song với a nên m cũng song song với a ( vô lí )  Vậy m không song song với b tức m cắt b

Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)

\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)

Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\) 

\(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé 

4 tháng 7 2019

TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)

nên \(n^2+6n+20\)không là số chính phương

Mà \(\left(n^2+6n+20\right)⋮11\)

\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)

Vậy \(n^2+6n+20\)không chia hết cho 121    (ĐPCM)

22 tháng 6 2019

Lần sau em đăng trong link: h.vn để đc các bạn giúp đỡ nhé!

1. ĐK x >1

pt  \(\Leftrightarrow\frac{1}{\sqrt{x}-\sqrt{x-1}}\left(m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}\right)=1\)

\(\Leftrightarrow m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}=\sqrt{x}-\sqrt{x-1}\)

\(\Leftrightarrow m\sqrt{x\left(x-1\right)}+1-16\sqrt[4]{x^3\left(x-1\right)}=\sqrt{x\left(x-1\right)}-x+1\)

\(\Leftrightarrow\left(m-1\right)\sqrt{x\left(x-1\right)}-16\sqrt[4]{x^3\left(x-1\right)}+x=0\)

\(\Leftrightarrow\left(m-1\right)\sqrt{\frac{x-1}{x}}-16\sqrt[4]{\frac{x-1}{x}}+1=0\)

Đặt rồi đưa về phương trình bậc 2: \(\left(m-1\right)t^2-16t+1=0\) 

2. ĐK:...

  \(\sqrt{x-4-2\sqrt{x-4}+1}+\sqrt{x-4-2.\sqrt{x-4}.3+9}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}-1\right|+\left|\sqrt{x-4}-3\right|=m\)Tìm m để pt có đúng 2 nghiệm. Tự làm nhé!

\(3.\) ĐK:...

Đặt: \(\left(x^2-3x-4\right)=a\)

\(\sqrt{x+7}=b\)

Ta có: \(ab-m\left(a-b\right)-m^2=0\Leftrightarrow m^2+m\left(a-b\right)-ab=0\)

\(\Delta=\left(a-b\right)^2+4ab=\left(a+b\right)^2\)

pt có 2 nghiệm : \(\orbr{\begin{cases}m=\frac{b-a-\left(a+b\right)}{2}=-a\\m=\frac{b-a+\left(a+b\right)}{2}=b\end{cases}}\)

Khi đó: \(\orbr{\begin{cases}m=-\left(x^2-3x-4\right)\\m=\sqrt{x+7}\end{cases}}\)

pt <=> \(\left(m+x^2-3x-4\right)\left(m-\sqrt{x+7}\right)=0\)Tìm m để pt có nhiều nghiệm nhất . 

1 tháng 6 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

KO

ĐĂNG

CÂU

HỎI

LINH

TINH

LÊN

DIỄN

ĐÀN

28 tháng 5 2019

Meeeeeeeeeeeeeeeeeeeeeee!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 5 2019

Tớ không vẽ hình được bạn tự vẽ nhé

a, Vì K thuộc đường tròn đường kính AB

=> AKB=90

Mà CHA=90

=> tứ giác AKNH nội tiếp

Vậy tứ giác AKNH nội tiếp

b,Vì 2 tiếp tuyến cắt nhau tại M 

nên \(OM\perp AC\)

=>\(OM//CB\)

=> tam giác AMO đồng dạng tam giác HCB

=> ĐPCM

c, Tứ giác AMKI nội tiếp do AIM=AKM=90

KIC=AMK

MÀ AMK=KNC do AM song song CH

=> KIC=KNC

=> tứ giác KINC nội tiếp 

=>KNI=KCI

Mà  KCI=KBA

=> KNI=KBA

=> IN song song AB

Vậy IN song song AB

Mình không viết kí hiệu góc nên bạn thông cảm

26 tháng 5 2019

 Vì \(x_2\)là nghiệm của phương trình

=> \(x_2^2-5x_2+3=0\)

=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)

Khi đó

\(A=||x_1-2|-|x_2-2||\)

=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)

=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)

Mà A>0(đề bài)

=> A=1

Vậy A=1