K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

1. Xét : m^2-2m+3 = (m^2-2m+1)+2 = (m-1)^2+2 > 0

=> hàm số trên luôn đồng biến trên tập xác định của nó

2. Để (d) đi qua A(2;8) thì :

8 = (m^2-2m+3).2 - 4

=> m=3 hoặc m=-1

3. Để (d) // (d') : y=3x+m-4 thì : m^2-2m+3=3 và -4 khác m-4

=> m=0 hoặc m=2 và m khác 0 => m=2

Tk mk nha

7 tháng 1 2018

Cũng hay đó, đã

7 tháng 1 2018

Cái này Liên ợp thần chưởng thôi !

ĐK: \(\frac{10}{3}\ge x\ge\frac{6}{5}\)ta có pt 

<=>\(2x^2-4x+3x-6=\sqrt{5x-6}-2+\sqrt{10-3x}-2\)

<=>\(2x\left(x-2\right)+3\left(x-2\right)=\frac{5\left(x-2\right)}{\sqrt{5x-6}+2}+\frac{3\left(2-x\right)}{\sqrt{10-3x}+2}\)

<=>\(\left(x-2\right)\left(2x+3+\frac{3}{\sqrt{10-3x}+2}-\frac{5}{\sqrt{5x-6}+2}\right)=0\) (1)

Vì \(\sqrt{5x-6}+2\ge2\Rightarrow\frac{-5}{\sqrt{5x-6}+2}\ge-\frac{5}{2}\)

Mà \(x\ge\frac{6}{5}\Rightarrow2x+3-\frac{5}{\sqrt{5x-6}+2}+\frac{3}{\sqrt{10-3x}+2}>0\)

Nên pt(1) <=> x=2 (thỏa mãn ĐK)

vậy ...

^_^

30 tháng 4 2020

đề có bị "khuyết " ko z :))

30 tháng 4 2020

đề sai nha

3 mà bé hơn 0

chúc bạn học tốt

7 tháng 1 2018

Xét :A = x^2017 + x^2017 + 1 + 1 + 1 +..... + 1 ( 2015 số 1)

Áp dụng bđt cosi ta có : 

A >= 2017\(\sqrt[2017]{x^{2017}.x^{2017}.1.1.....1}\) = 2017x^2

=> x^2 < = A/2017 = 2x^2017+2015/2017

Tương tự : y^2 < = 2y^2017+2015/2017

z^2 < = 2z^2017+2015/2017

=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+3.2015/2017 = 2.3+3.2015/2017 = 3

Dấu "=" xảy ra <=> x=y=z=1

Vậy Max của x^2+y^2+z^2 = 3 <=> x=y=z=1

Tk mk nha

7 tháng 1 2018

Bài này lm rồi mà, đăng lên lmj