K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

Answer:

Bài 1:

a. Ta xét vế trái:

\(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)

\(=\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\sqrt{5}-3\)

\(=\sqrt{5}+3+\sqrt{3}-\sqrt{5}-3\)

\(=\sqrt{3}\)

b. Với \(a\ge1\)

\(P=a-\left(\frac{1}{\sqrt{a}-\sqrt{a-1}}-\frac{1}{\sqrt{a}+a-1}\right)\)

\(=a-\frac{\sqrt{a}+\sqrt{a-1}-\sqrt{a}+\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)

\(=a-\frac{2\sqrt{a-1}}{a-a+1}\)

\(=a-\frac{2\sqrt{a-1}}{1}\)

\(=a-2\sqrt{a-1}\)

\(=a-1-2\sqrt{a-1}+1\)

\(=\left(\sqrt{a-1}-1\right)\ge0\forall a\ge1\)

\(\Rightarrow P\ge0\)

2 tháng 2 2022

Answer:

Bài 2:

\(3x+\sqrt{2}=2\left(x+\sqrt{2}\right)\)

\(\Rightarrow3x+\sqrt{2}=2x+2\sqrt{2}\)

\(\Rightarrow3x-2x=2\sqrt{2}-\sqrt{2}\)

\(\Rightarrow x=\sqrt{2}\)

\(3\sqrt{x-2}-\sqrt{x^2-4}=0\left(ĐK:-2\le x\le2\right)\)

\(\Rightarrow3\sqrt{x-2}=\sqrt{x^2-4}\)

\(\Rightarrow9\left(x-2\right)=x^2-4\)

\(\Rightarrow9x-2-x^2+4=0\)

\(\Rightarrow-x^2+9x+2=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{9+\sqrt{89}}{2}\text{(Loại)}\\x=\frac{9-\sqrt{89}}{2}\end{cases}}\)

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi mb) tìm m để 3.x1 + 2.x2 = 5m -16c) cho A= x1² + x2² + 6.x1.x2c.1) tìm m để A = -44c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.f) tìm m để phương...
Đọc tiếp

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m

b) tìm m để 3.x1 + 2.x2 = 5m -16

c) cho A= x1² + x2² + 6.x1.x2

c.1) tìm m để A = -44

c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.

d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.

e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.

f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.

g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.

h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.

i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.

j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.

k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²

l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.

m) tìm m để x1³ + x2³ <0

n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)

 

3
1 tháng 2 2022

TL :

Đề sai

\(x1^2\)là số gì

HT

1 tháng 2 2022

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

undefined

0
31 tháng 1 2022

a) Ta có \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=\left(a^2c^2+b^2c^2\right)+\left(a^2d^2+b^2d^2\right)\)\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) Ta có \(0\le\left(ad-bc\right)^2\)\(\Leftrightarrow\left(ac+bd\right)^2\le\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

Mà theo câu a, ta có \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Nên \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

31 tháng 1 2022

thank bạn nha!!!

1 tháng 2 2022

Điều kiện \(\hept{\begin{cases}x\ne0\\x+y\ne0\end{cases}}\)

Đặt \(\frac{1}{x}=a\)và \(\frac{1}{x+y}=b\), khi đó hệ phương trình đã cho trở thành \(\hept{\begin{cases}2a+5b=2\\3a+b=1,7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2a+5b=2\\15a+5b=8,5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}13a=6,5\\3a+b=2,7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\3.\frac{1}{2}+b=2,7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{6}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{2}\\\frac{1}{x+y}=\frac{6}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\left(nhận\right)\\\frac{1}{2+y}=\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{7}{6}\end{cases}}\left(nhận\right)\)

Vậy hpt đã cho có nghiệm duy nhất \(\left(2;-\frac{7}{6}\right)\)

31 tháng 1 2022

Cuối cùng trong năm 2021 thôi nhé.

31 tháng 1 2022

Đặt biểu thức trên là A

TC

√1 + 1/1^2 + 1/2^2 = 1 + 1 - 1/2

Tương tự

√1 + 1/2^2 + 1/3^2 = 1 + 1/2 -  1/3

√1 + 1/2021^2 + 2022^2 = 1 + 1/2021 -  1/2022

=> A = (1 + 1 + 1/3 +...+ 1/2021) - (1/2 + 1/3 +....+ 1/2022)

=> A = 1 + 1 - 1/2022 = 4043/2022

đúng không bạn

DD
1 tháng 2 2022

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+b^2c^2+b^2d^2+a^2d^2=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) Áp dụng câu a): 

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(\ge\left(ac+bd\right)^2\)

Dấu \(=\)xảy ra khi \(ad=bc\).