K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

18 tháng 12 2018

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)

\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)

\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^3\left(a+b\right)\)

18 tháng 12 2018

\(\left(3x+12\right)-\left(x^2-16\right)=3\left(x+4\right)-\left(x+4\right)\left(x-4\right)=\left(x+4\right)\left(3-x+4\right)\)

=(x+4)(7-x)

18 tháng 12 2018
(3x + 12) – (x² + 16) = 3(x + 4) – (x² + 4²) = 3(x + 4) – (x + 4).(x – 4) = ( x + 4).(3 + x – 4) = ( x + 4).(–7 + x)
18 tháng 12 2018

\(\frac{7x}{\left(2x+3\right).\left(2x-3\right)}:\frac{5}{8x-4}\)

\(=\frac{7x}{4x^2-9}\cdot\frac{8x-4}{5}=\frac{56x^2-28}{20x^2-45}\)

p/s: lần sau bn vt rõ hộ tớ cái đề....dùng công thức í

24 tháng 12 2018

M= x+2 phần x2-2x + x-4 phần 2x-4

a) tìm ĐKXĐ

b) Rút gọn

18 tháng 12 2018

Câu 2 hình như sai đề bạn ey.

18 tháng 12 2018

Câu 1: 

Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)

Thật vậy,điều cần c/m  \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)

Vậy BĐT phụ (Cô si) là đúng.

----------------------------------------------------------

Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)

Do đó: 

\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

17 tháng 12 2018

(x+y)2 - 2x-2y + 1

= (x+y)2 -1  - 2x -2y +2

= (x+y-1).(x+y+1) - 2.(x+y-1)

= (x+y-1).(x+y+1-2)

= (x+y-1)2

17 tháng 12 2018

\(\left(x+y\right)^2-2x-2y+1\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1\)

\(=\left(x+y-1\right)^2\)

Nếu để ý thì bạn sẽ thấy đây là hằng đẳng thức !

17 tháng 12 2018

a) x2 + 4x + 3 - y2 -2y

= x2 +4x + 4 - y-2y-1

= (x+2)2 - (y+1)2

= (x+2-y-1).(x+2+y+1)

= (x-y+1).(x+y+3)

b) 2a2 -5ab + 2b2

= 2a2 -4ab + 2b2 - ab

= 2.(a2 - 2ab+b2) - ab

= 2.(a-b)-ab

...

c) (x+y)2 - 2x - 2y + 1

= (x+y)2 - 1 - 2x -2y +2

= (x+y-1).(x+y+1) - 2.(x+y-1)

= (x+y-1)2

17 tháng 12 2018

=15.(64+36)+100.(25+60)

=15.100+85.100

=100.(15+85)

=100.100

=10000

17 tháng 12 2018

bn tự kẻ hình nha, phần a bn bk làm r nên mk ko làm nx

b) ta có: OD = OH ( dễ chứng minh ADHE là h.c.n => OD = OH do t/c 2 đường chéo)

=> tg ODH cân tại O => ^HDO = ^DHO(1)

Xét tg DBH vuông tại D

có: BP = PH(gt)

=> DP = PH (t/c đường trung tuyến của tg vuông)

=> tg DPH cân tại P => ^PDH = ^PHD (2)

Từ (1);(2) => ^HDO + ^PDH = ^DHO + ^PHD = ^BHA = 90 độ

=> ^HDO + ^PDH = 90 độ => ^PDE = 90 độ => \(DP\perp DE⋮D\)

cmtt, ta có: \(QE\perp DE⋮E\)

=> DP // QE

Xét tứ giác DEQP

có: DP// QE; ^PDE = 90 độ

=> DEQP là h.thang vuông

c) ( Nối Q với O; gọi giao điểm của QO và AB là K)

ta có: OA = OH; DH // AC ( ADHE là h.c.n)

Xét tg ACH

có: OA = OH; HQ = QC

=> QO là đường trung bình của tg ACH

=> QO // AC

mà DH // AC (cmt) => QO // DH

Lại có: \(DH\perp AB⋮D\left(gt\right)\)

\(\Rightarrow QO\perp AB⋮K\)

Xét tg ABQ

có: \(QO\perp AB⋮K\left(cmt\right);AH\perp BQ⋮H\left(gt\right)\)

QO cắt AH tại O

=> O là trực tâm của tg ABQ

d) ta có: \(S_{\Delta DPB}=\frac{BP.DP}{2};S_{\Delta DPH}=\frac{PH.DP}{2}\)

mà BP = PH \(\Rightarrow S_{\Delta DPB}=S_{\Delta DPH}\)(1)

cmtt, ta có: \(S_{\Delta EQH}=S_{\Delta EQC}\)(2)

ta có: tg ADE = tg HED ( cgv-cgv) ( do ADHE là h.c.n => AD = HE; AE = HD)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta HED}\) (3)

Từ (1);(2);(3) => ...

đến chỗ này bn chỉ cần cộng diện tích các tg lại, dễ chứng minh được đpcm