K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

ĐKXĐ : \(x\ge0\)

Đặt \(A=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

\(=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)

\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)

Do đó : \(A\ge2\left(\sqrt{2011}-1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)

Vậy \(A_{min}=2\left(\sqrt{2011}-1\right)\) khi \(x=\frac{1}{2011}\)

25 tháng 8 2020

\(ĐK:x>0\)

Xét biểu thức\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}-2\left(\sqrt{2011}-1\right)+2\left(\sqrt{2011}-1\right)\)\(=\frac{2011x-2\sqrt{x}+1-2\sqrt{2011x}+2\sqrt{x}}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\)\(=\frac{\left(\sqrt{2011x}-1\right)^2}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\ge2\left(\sqrt{2011}-1\right)\)

\(\Rightarrow\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\ge2\left(\sqrt{2011}-1\right)\)

Đẳng thức xảy ra khi \(\sqrt{2011x}=1\Leftrightarrow2011x=1\Leftrightarrow x=\frac{1}{2011}\)

Vậy giá trị nhỏ nhất của biểu thức là \(2\left(\sqrt{2011}-1\right)\), đạt được khi \(x=\frac{1}{2011}\)

25 tháng 8 2020

Ta có : \(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+....+2014^{2015}}\)

\(=\frac{10101\cdot0}{2^3+3^4+4^5+....+2014^{2015}}=0\)

Vậy \(S=0\)

25 tháng 8 2020

\(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot0}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=0\)

25 tháng 8 2020

điếc là hư tai ,hư tai là hai tư 24 con nha bạn

25 tháng 8 2020

CÓ 24 CON ,VÌ ĐIẾC LÀ HƯ TAI ,HƯ TAI LÀ 24

25 tháng 8 2020

24 con voi đúng hư tai là hai tư

25 tháng 8 2020

24 con.

25 tháng 8 2020

P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\) 

\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\) 

\(=2^{12}\cdot3^5\left(1-3\right)\) 

\(=2^{12}\cdot-2\cdot3^5\) 

\(=-2^{13}\cdot3^5\) 

b) 

\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\) 

\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)      

\(=2\cdot2^{12}\cdot3^6\)                        

\(=2^{13}\cdot3^6\)                

25 tháng 8 2020

30kg nha

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)

\(\Rightarrow x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)

\(\Rightarrow x=\frac{231}{80}\)

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)

=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)

=> \(\frac{13}{36}x+\frac{8}{45}=0\)

=> \(\frac{13}{36}x=-\frac{8}{45}\)

=> \(x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)

=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)

=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)

=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)

=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)

25 tháng 8 2020

4200 hg = 42 yến