Bài 1 tìm x
(1/1.101+1/2.102+....+1/10.110).x=1/1.11+1/2.12+...+1/100.110
Giúp mình với mình cần gấp ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dấu . là nhân
Có tất cả số vịt là :
\(36:\frac{1}{3}=36.3=108\)(con)
Vậy gà 36 con ; vịt : 108 con
nhà bạn trên có số con gà là:
36: ( 1+3) *1 = 9 (con)
số vịt nhà bạn trên là :
9*3= 27 (cn )
đáp số :
đúng không ???
Bg
Số thứ nhất là:
100 - 53 = 47
Số thứ hai là:
68 - 47 = 21
Số thứ ba là:
53 - 21 = 32 (hoặc 100 - 68 = 32)
Đáp số:...
số thứ ba là:
100 - 68=32
số thứ nhất là:
100-53=47
số thứ hai là:
100-[32+47] = 21
đáp số: S1 32
S2 47
S3 21.
HOK TỐT K ĐÚNG CHO MÌNH NHE
\(ab+bc-c^2-ac+1=0\)
\(< =>b\left(a+c\right)-c\left(a+c\right)+1=0\)
\(< =>\left(b-c\right)\left(a+c\right)=-1\)
\(< =>a+b=0\)
\(< =>A=\left(a+b\right)^3=0^3=0\)
không hiểu thì hỏi mình chỉ cho
Ta có ab - c2 + bc - ac + 1 = 0
=> (ab + bc) - (ac + c2) + 1 = 0
=> b(a + c) -c(a + c) + 1 = 0
=> (b - c)(a + c) = - 1 (1)
Vì a;b;c nguyên
=> \(\hept{\begin{cases}b-c\inℤ\\a+c\inℤ\end{cases}}\)
Ta có -1 = (-1).1 = 1.(-1)
Khi đó (b - c)(a + c) = 1.(-1) = (-1).1
Nếu \(\hept{\begin{cases}b-c=1\\a+c=-1\end{cases}}\Rightarrow b-c+a+c=0\Rightarrow a+b=0\)
Nếu \(\hept{\begin{cases}b-c=-1\\a+c=1\end{cases}}\Rightarrow a+c+b-c=0\Rightarrow a+b=0\)
Vậy a + b = 0
Khi đó A = 03 = 0
e lớp 7 nên sai thì thôi ạ
\(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\left(ĐK:x\ne\pm1;0\right)\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\)
\(=\left[\frac{\left(x+1+x-1\right)\left(x+1-x-1\right)}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right].\frac{x+2007}{x}\)
\(=\left(\frac{2x.0}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{2007}{x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007\left(x^2-4x-1\right)}{x^3-x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007x^2-8028x-2007}{x^3-x}+\frac{x^3-4x^2-x}{x^3-x}\)
\(=\frac{x^3+2003x^2-8029x-2007}{x^3-x}\)( số to vch )
bằng 1,290179641
hok tốt
k đúng cho mình nhe thanks/very thanks
ta gọi phần trong ngoặc là A thì ta có
A nhân x = A
x= A-A
x=1
Đặt C = \(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\)
=> 100C = \(\frac{100}{1.101}+\frac{100}{2.102}+...+\frac{100}{10.110}\)
=> 100C = \(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\)
=> 100C = \(\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\)
=> C = \(\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)}{100}\)
Lại có B = \(\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
=> 10B = \(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\)
=> 10B = \(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\)
=> 10B = \(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\)
=> 10B = \(1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\)
=> B = \(\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)}{10}\)
Khi đó \(\left(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\right)x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
<=> C.x = B
<=> \(\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)}{100}x=\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+..+\frac{1}{110}\right)}{10}\)
=> \(x=10\)
Vậy x = 10