cho một số có hai chữ số . tổng của hai chữ số ấy bằng 6. Nếu đảo vị trí của hai chữ số trong số đó thì được số mới bằng 7/4 số ban đầu. Vậy số ban đầu là ......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: x - y = x và x + y = y (x, y \(\inℤ\))
Xét x - y = x:
=> x - x = y
=> 0 = y
Xét x + y = y:
=> x = y - y
=> x = 0
Vậy x = y = 0
\(x-y=x\)và \(x+y=y\)
Cộng 2 vế lại với nhau ta được: \(x-y+x+y=x+y\)
\(\Leftrightarrow2x=x+y\)\(\Leftrightarrow x=y\)
mà \(x+y=y\)\(\Rightarrow x=0\)\(\Rightarrow x=y=0\)
Vậy \(x=y=0\)
\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
\(=\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{3}{5}-\frac{3}{5}\right)+\left(\frac{5}{7}-\frac{5}{7}\right)+\left(\frac{7}{9}-\frac{7}{9}\right)+\left(\frac{9}{11}-\frac{9}{11}\right)-\frac{11}{13}\)
\(=0+0+0+0+0-\frac{11}{13}=-\frac{11}{13}\)
\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
\(=\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{3}{5}-\frac{3}{5}\right)+\left(\frac{5}{7}-\frac{5}{7}\right)+\left(\frac{7}{9}-\frac{7}{9}\right)-\frac{11}{13}\)
\(=0+0+0+0+0-\frac{11}{13}=-\frac{11}{13}\)
a) A = \(\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+....+\frac{10301}{100.103}\) (có 34 số hạng)
A = \(\frac{4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+....+\frac{100.103+1}{103.100}\)
A = \(1+\frac{1}{1.4}+1+\frac{1}{4.7}+1+\frac{1}{7.10}+....+1+\frac{1}{100.103}\)
A = \(1.34+\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}\cdot\frac{102}{103}\)
A = \(34+\frac{34}{103}=\frac{3536}{103}\)
\(\left(x-\frac{2}{5}\right)^2+\frac{39}{16}=3\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{5}=\frac{-3}{4}\\x-\frac{2}{5}=\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-7}{20}\\x=\frac{23}{20}\end{cases}}\)
Vậy \(x=\frac{-7}{20}\)hoặc \(x=\frac{23}{20}\)
\(\left(x-\frac{2}{5}\right)^2+\frac{39}{16}=3\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)\left(x-\frac{2}{5}\right)+\frac{39}{16}=3\)
\(\Leftrightarrow x^2-\frac{2}{5}x-\frac{2}{5}x+\frac{4}{25}+\frac{39}{16}=3\)
\(\Leftrightarrow x^2-\frac{4}{5}x-\frac{161}{400}=0\)
\(\Leftrightarrow\left(x-\frac{23}{20}\right)\left(x+\frac{7}{20}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{23}{20}\\x=-\frac{7}{20}\end{cases}}\)
a, \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
b, \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=81x^2-18x+1+1-10x+25x^2+18x-90x^2-2+10x\)
\(=16x^2\)
c;d;e;f tự làm, đầu I giữ lấy còn trường tồn:)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=\left(20x^2+4x^2-18x^2\right)+\left(60x+8x-20x\right)+\left(5-12-50\right)\)
\(=6x^2+48x-57\)
Nếu tăng chiều rộng 6m và giảm chiều dài đi 6m thì mảnh đất sẽ thàng hình vuông nên chiều dài hơn chiều rộng là 6m
Tổng chiều dài và chiều rộng là: 216 : 2 = 106(m)
Chiều dài là: (106+6):2=56(m)
Chiều rộng là: 56-6=50(m)
Diện tích mảnh vườn là: 56*50= 2800(m2)
1m2 thu hoạch được số kg thóc là: 450 : 150 = 3(kg)
Vậy 2800m2 thu hoạc được số kg thóc là: 2800 * 3 = 8400(kg)=8,4 tấn
Đáp số : S: 2800m2
Thu hoạch được 8,4 tấn thóc.
số ban đầu là 24 vì nếu lấy 42 là số đảo ngược sẽ bằng \(\frac{7}{4}\)số ban đầu
Bg
Gọi số cần tìm là ab (ab là số tự nhiên khác 0)
Theo đề bài: a + b = 6 và ba = ab x \(\frac{7}{4}\)
Vì a + b = 6
=> b = 6 - a
Xét ba = ab x \(\frac{7}{4}\):
=> 10 x b + a = (10 x a + b) x \(\frac{7}{4}\)
=> 10 x b + a = 10 x a x \(\frac{7}{4}\) + b x \(\frac{7}{4}\)
=> 10 x b + a = \(\frac{35}{2}\) x a + b x \(\frac{7}{4}\)
=> 10 x b = \(\frac{33}{2}\) x a + b x \(\frac{7}{4}\)
=> \(\frac{33}{4}\) x b = \(\frac{33}{2}\) x a
Mà b = 6 - a
=> \(\frac{33}{4}\) x (6 - a) = \(\frac{33}{2}\) x a
=> \(\frac{33}{4}\) x 6 - a x \(\frac{33}{4}\) = \(\frac{33}{2}\) x a
=> \(\frac{99}{2}\) = \(\frac{99}{4}\) x a
=> a = 2
=> b = 6 - 2 = 4
Vậy số cần tìm là 24