Tìm số tự nhiên x, biết:
a) 17x + 33x = 100
b) 23x + 15 ( x + 7) = 105
c) 32 (x - 11) + 4x = 152
d) 51 ( 3x + 5) - 406 = 22 (3x +50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
x = 14
=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1
Thế vào N(x) ta được :
x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Bài 2.
a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )
= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]
= ( 1 - x )2 - ( 2x3 - 3x2 )2
= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]
= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )
= x2 - 2x + 1 - 4x6 + 12x5 - 9x4
= -4x6 + 12x5 - 9x4 + x2 - 2x + 1
b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
\(P=\left(m^2-5m+\frac{25}{4}\right)-\frac{13}{4}=\left(m-\frac{5}{2}\right)^2-\frac{13}{4}\)
Vì \(m\ge3 \Rightarrow m-\frac{5}{2}\ge\frac{1}{2} \Rightarrow\left(m-\frac{5}{2}\right)^2\ge\frac{1}{4} \Rightarrow\left(m-\frac{5}{2}\right)^2-\frac{13}{4}\ge\frac{1}{4}-\frac{13}{4}\)
\(\Rightarrow P\ge-3\)
\(MinP=-3\Leftrightarrow m=3\)
\(I_{A_2}=1,5\left(A\right)?\)
Ta có: \(\frac{R_1}{R_2}=\frac{I_{A_2}}{I_{A_1}}\)
\(\Leftrightarrow\frac{20}{R_2}=\frac{1,5}{0,5}\)
\(\Rightarrow R_2=\frac{20}{\frac{1,5}{0,5}}=\frac{20}{3}\left(\Omega\right)\)
Vậy \(R_2=\frac{20}{3}\Omega\)
a. ( x + 1 ) ( x + 2 ) ( x - 3 )
= ( x2 + 3x + 2 ) ( x - 3 )
= x3 + 3x2 + 2x - 3x2 - 9x - 6
= x3 - 7x - 6
b. ( 2x - 1 ) ( x + 2 ) ( x + 3 )
= ( 2x2 + 3x - 2 ) ( x + 3 )
= 2x3 + 3x2 - 2x + 6x2 + 9x - 6
= 2x3 + 9x2 + 7x - 6
a) ( x + 1 )( x + 2 )( x - 3 )
= ( x2 + 3x + 2 )( x - 3 )
= x3 - 3x2 + 3x2 - 9x + 2x - 6
= x3 - 7x - 6
b) ( 2x - 1 )( x + 2 )( x + 3 )
= ( 2x2 + 3x - 2 )( x + 3 )
= 2x3 + 6x2 + 3x2 + 9x - 2x - 6
= 2x3 + 9x2 + 7x - 6
\(BPT\Leftrightarrow\left(2+\sqrt{x^2-2x+5}\right)\left(x+1\right)+\frac{2x\left(3x^2+2x-1\right)}{2\sqrt{x^2+1}+\sqrt{x^2-2x+5}}\le0\)
\(\Leftrightarrow\left(2+\sqrt{x^2-2x+5}\right)\left(x+1\right)+\frac{2x\left(x+1\right)\left(3x-1\right)}{2\sqrt{x^2+1}+\sqrt{x^2-2x+5}}\le0\)
\(\Leftrightarrow\left(x+1\right)\text{[}2+\sqrt{x^2-2x+5}+\frac{2x\left(3x-1\right)}{2\sqrt{x^2+1}+\sqrt{x^2-2x+5}}\text{]}\le0\)
\(\Leftrightarrow\left(x+1\right)\left(4\sqrt{x^2+1}+2\sqrt{x^2-2x+5}+2\sqrt{\left(x^2+1\right)\left(x^2-2x+5\right)}+7x^2-4x+5\right)\)\(\le0\Leftrightarrow x+1\le0\Leftrightarrow x\le-1\)
đk: \(x\ne0\)
Ta có:
\(D=x+\sqrt{x^2+\frac{1}{x^2}+2}\)
\(D=x+\sqrt{\left(x+\frac{1}{x}\right)^2}\)
\(D=x+\left|x+\frac{1}{x}\right|\)
\(D=x-x-\frac{1}{x}\) \(\left(x< 0\right)\)
\(D=-\frac{1}{x}\)
a) 17x + 33x = 100
<=> 50x = 100
<=> x = 2
Vậy x = 2
b) 23x + 15 ( x + 7) = 105
<=> 23x + 15x + 105 = 105
<=> 38x = 0
<=> x = 0
Vậy x = 0
c) 32 (x - 11) + 4x = 152
<=> 32x - 352 + 4x = 152
<=> 36x = 504
<=> x = 14
Vậy x = 14
d) 51 ( 3x + 5) - 406 = 22 (3x +50)
<=> 153x + 255 - 406 = 66x + 1100
<=> 87x = 1251
<=> x = \(\frac{1251}{87}\)
Vậy x = \(\frac{1251}{87}\)
Học tốt nhá :))
Bài làm :
\(a,17x+33x=100\)
\(\left(17+33\right)x=100\)
\(50x=100\)
\(x=2\)
\(b,23x+15\left(x+7\right)=105\)
\(23x+15x+105=105\)
\(38x=0\)
\(x=0\)
\(c,32\left(x-11\right)+4x=152\)
\(32x-352+4x=152\)
\(36x=504\)
\(x=14\)
\(d,51\left(3x+5\right)-406=22\left(3x+50\right)\)
\(153x+255-406=66x+1100\)
\(153x-66x=1100+406-255\)
\(87x=1251\)
\(x=\frac{1251}{87}\)
Học tốt