Cho a,b,c khác 0 và b2=ac
Cm:a/c=(a+2012b)2/(b+2012c)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh BC lấy M là trung điểm
Xét tam giác ABM và ACM
AB=AC (gt)
AM là cạnh chung
MB=MC ( M là trung điểm BC)
=> tam giác ABM =tam giác ACM(c.c.c)
=> ^ABM =^ACM (2 goác tương ứng )
hay ^ABC =^ACM
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2015a}{2015c}=\frac{2016b}{2016d}\)
\(=\frac{2015a-2016b}{2015c-2016d}=\frac{2015a+2016b}{2015c+2016d}\)
\(\Rightarrow\frac{2015a-2016b}{2015a+2016b}=\frac{2015c-2016d}{2015c+2016d}\)(đpcm)
Từ \(\frac{a}{b}=\frac{c}{d}\)ta suy ra:
\(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a-b}{a+b}=\frac{c-d}{c+d}\Rightarrow\frac{2015a-2016b}{2015a+2016b}\)\(=\frac{2015c-2016d}{2015c+2016d}\)(Áp dụng tính chất dãy tỉ số bằng nhau)
Ta có \(\frac{a}{c}=\frac{c}{b}\)=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+b^2}{c^2+d^2}\) (1)\
Ta lại có : \(\frac{a^2}{c^2}=\frac{a}{c}.\left(\frac{a}{c}\right)=\frac{a}{c}.\left(\frac{c}{b}\right)=\frac{a}{b}\) ( vì \(\frac{a}{c}=\frac{c}{b}\)) (2)
Từ 1,2 => đpcm
Ta có:
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a}{b}=c^2\)
Ta lại có:
\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)(đpcm)
Ta có nếu theo quy luật như trên thì sẽ có 1 thừa số là\(\frac{1}{49}-\frac{1}{7^2}\)
Mà chúng bằng 0 nên tích trên bằng 0