cho Ak =1- \(\frac{4}{\left(2k+1\right)^2}\) với k>=1 chứng minh P=A1. A2 .A3. ..... A50 > 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1
\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)
\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)
\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm )
...
![](https://rs.olm.vn/images/avt/0.png?1311)
M = x4 - 6x3 + 10x2 - 6x + 9
M = (x2 - 6x + 9) + x4 - 6x3 + 9x2
M = (x - 3)2 + x2(x2 - 6x + 9)
M = (x - 3)2.(1 + x2)
Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)
\(\Rightarrow M\ge1\)
Dấu 'x' xảy ra khi:
\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Mmin = 1 khi x = 3
Chúc bạn học tốt!!!
Mình giải lại từ dòng số 6 nhé!!!
=> M = 0
Dấu '=' xảy ra khi:
(x - 3)2 = 0 => x - 3 = 0
=> x = 3
Vậy Mmin = 0 khi x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x^2+x+1\right)^2\)
\(=\left[\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\right]^2\)
\(=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Dấu "="\(\Leftrightarrow x=-\frac{1}{2}\)
Vậy ............
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4xy-3\left(x+y\right)=59\Rightarrow16xy-12x-12y=59.4\)
\(\Rightarrow4x\left(4y-3\right)-3\left(4y-3\right)=59.4+9\)
\(\Rightarrow\left(4x-3\right)\left(4y-3\right)=245\)
Ta có bảng sau:
4x-3 | 1 | 5 | 7 | 35 | 49 | 245 |
4y-3 | 245 | 49 | 35 | 7 | 5 | 1 |
x | 1 | 2 | 5/2 | 19/2 | 13 | 62 |
y | 62 | 13 | 19/2 | 5/2 | 2 | 1 |
Mà x,y nguyên dương
Vậy \(\left(x;y\right)\in\left\{\left(1;62\right),\left(2;13\right),\left(13;2\right),\left(62;1\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2x^2+9y^2-6xy-6x-12y+2015\)
\(A=\left(x^2-6xy+9y^2\right)+x^2-6x-12y+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)-10x+x^2+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)+4+\left(x^2-10x+25\right)+1986\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1986\)
Vì \(\left(x-3y+2\right)^2\ge0;\left(x-5\right)^2\ge0\)
\(\Rightarrow A\ge1986\)
Dấu '=' xảy ra khi:
\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy Amin= 1986 khi x = 5, y = 7/3
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)