K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4

Chắc dễ đấy 

22 tháng 4

Mới giữa kì thôi em, em cứ tiếp tục cố gắng nhé, bởi còn bài thi cuối kì nữa. Nhưng em phải chấp nhận là điểm em sẽ không cao. Cố gắng lên nhé.

22 tháng 4

A là giao điểm của hai phương trình: 7x - 2y - 3 = 0

                                                           6x - y - 4 = 0

=> A(1;2)

M là trung điểm AB => xA + xB = 2xM ; yA + yB = 2yM

=> 1 + xB = 2.2 ; 2 + yB = 2.0

=> B(3;-2)

Ta có: \(\overrightarrow{AB}\) = (2;-4) => nAB = (2;1)

Phương trình đường thẳng AB là:

2(x - 1) + 1(y - 2) = 0

=> 2x + y - 4 = 0    

loading...

2
22 tháng 4

Phương trình chính tắc của (E) có dạng x2/a2 + y2/b2 = 11

(E) đi qua M nên thay toạ độ M vào pt, ta có: 9/5a2 + 16/5b2 = 11

=> 9b2 + 16a2 = 5a2b2 (1)

Tam giác MF1F2 vuông tại M nên MF12 + MF22 = F1F22 = 4c2 

MF1 + MF2 = 2a => MF12 + MF22 + 2MF1.MF2 = 4a2

=> 2MF1.MF2 = 4a2 - 4c2 = 4b2 

=> MF1.MF2 = 2b2

Ta có: SABC = 1/2.yM.F1F2 = 1/2.MF1.MF2

=> F1F2.2/căn5 = 1/2.2b2 

=> c.4/căn5 = b2 

=> 16c2/5 = b4

=> 16(a2 - b2)/5 = b4

=> a2 = 5b4/16 + b2

Thay vào (1), ta có: 25b6/16 - 25b2 = 0

=> b4/16 = 1

=> b = 2

=> a = 3

Vậy phương trình chính tắc của (E) là x2/9 + y2/4 = 1

 

22 tháng 4

2 dòng đầu ở cuối đều = 1 

22 tháng 4

Đổi 75cm trên thực tế = 2,5 đơn vị trên mặt phẳng toạ độ

Gọi điểm cách điểm O 2,5 đơn vị và thuộc đường elip là M => M(2,5;y)

Thay toạ độ điểm M vào pt đường elip, ta có: (2,5)2/16 + y2/4 = 1 

=> y2/4 = 39/64

=> y = căn39/4 ≈ 1,56 

Chiều cao h của ô thoáng là: 1,56 . 30 = 46,8 (cm)

21 tháng 4

Gọi a là số kỳ thủ tham gia (a thuộc N*)

Hai kỳ thủ bất kỳ gặp nhau hai ván gồm trận lượt đi và lượt về khi đó số trận đấu là

a(a-1)=90

→a=10(tm) hoặc a=-9(không tm)

=>Vậy số kỳ thủ tham gia là 10 người.

22 tháng 4

Tác phẩm "Miền Trung" của Hoàng Trần Cương là một bản tình ca sâu lắng, thể hiện tình yêu và sự ngưỡng mộ sâu sắc của tác giả đối với vùng đất và con người miền Trung của Việt Nam. Với nền tảng là những khó khăn, thử thách mà thiên nhiên khắc nghiệt mang lại, tác phẩm không chỉ là lời ca ngợi vẻ đẹp kiên cường, bất khuất của miền đất này mà còn là sự tri ân đối với những con người đã không ngừng chiến đấu và vươn lên từ những gian khó. Miền Trung trong tác phẩm của Hoàng Trần Cương như một người anh hùng thầm lặng, kiên trung với vẻ đẹp rắn rỏi, mộc mạc mà say đắm lòng người. 

Để chứng minh rằng \( \frac{1}{x} + \frac{1}{y} = 1 \), ta bắt đầu từ phương trình \( \frac{x}{y} + \frac{y}{x} = 3 \):   \( \frac{x}{y} + \frac{y}{x} = 3 \)   Nhân cả hai vế với \(xy\), ta có:   \(x^2 + y^2 = 3xy\)   Tiếp theo, ta nhân cả hai vế của phương trình thứ hai \( \frac{x^2}{y} + \frac{y^2}{x} = 10 \) với \(x + y\), ta có:   \(x^3 + y^3 + xy(x + y) = 10(x + y)\)   Vì \(x \neq 0\) và \(y \neq 0\), nên \(x + y \neq 0\). Ta có thể chia...
Đọc tiếp

Để chứng minh rằng \( \frac{1}{x} + \frac{1}{y} = 1 \), ta bắt đầu từ phương trình \( \frac{x}{y} + \frac{y}{x} = 3 \):

 

\( \frac{x}{y} + \frac{y}{x} = 3 \)

 

Nhân cả hai vế với \(xy\), ta có:

 

\(x^2 + y^2 = 3xy\)

 

Tiếp theo, ta nhân cả hai vế của phương trình thứ hai \( \frac{x^2}{y} + \frac{y^2}{x} = 10 \) với \(x + y\), ta có:

 

\(x^3 + y^3 + xy(x + y) = 10(x + y)\)

 

Vì \(x \neq 0\) và \(y \neq 0\), nên \(x + y \neq 0\). Ta có thể chia cả hai vế cho \(x + y\):

Xin lỗi về sự gián đoạn. Bây giờ chúng ta có hai phương trình:

 

1. \(x^2 + y^2 = 3xy\)

2. \(x^3 + y^3 + xy = 10\)

 

Ta có thể thay \(x^2 + y^2\) từ phương trình thứ nhất vào phương trình thứ hai:

 

\(x^3 + y^3 + 3xy = 10\)

 

Lưu ý rằng \(x\) và \(y\) khác 0. Ta có thể chia cả hai vế cho \(xy\) mà không làm mất tính chất của phương trình:

 

\(\frac{x^3}{xy} + \frac{y^3}{xy} + 3 = \frac{10}{xy}\)

 

\(\frac{x^2}{y} + \frac{y^2}{x} + 3 = \frac{10}{xy}\)

 

Thay \(x^2/y + y^2/x\) từ phương trình ban đầu vào, ta có:

 

\(3 + 3 = \frac{10}{xy}\)

 

\(6 = \frac{10}{xy}\)

 

Từ đó, ta có \(xy = \frac{10}{6} = \frac{5}{3}\).

 

Cuối cùng, ta có thể thay \(xy\) trở lại vào phương trình ban đầu:

 

\(x^2 + y^2 = 3 \cdot \frac{5}{3}\)

 

\(x^2 + y^2 = 5\)

 

Bây giờ, ta có thể sử dụng bổ đề Pythagoras: \(x^2 + y^2 = (x + y)^2 - 2xy\).

 

Ta biết rằng \(x^2 + y^2 = 5\) và \(xy = \frac{5}{3}\). Vậy nên:

 

\(5 = (x + y)^2 - 2 \cdot \frac{5}{3}\)

 

\(5 = (x + y)^2 - \frac{10}{3}\)

 

\(15 = 3(x + y)^2 - 10\)

 

\(25 = 3(x + y)^2\)

 

\(x + y = \pm \sqrt{\frac{25}{3}} = \pm \frac{5}{\sqrt{3}} = \pm \frac{5\sqrt{3}}{3}\)

 

Do \(x\) và \(y\) không thể bằng 0, nên \(x + y\) không thể bằng 0. Vậy nên:

 

\(x + y = \frac{5\sqrt{3}}{3}\)

 

Và từ đó:

 

\(\frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} = \frac{\frac{5\sqrt{3}}{3}}{\frac{5}{3}} = 1\)

 

Vậy nên, chúng ta đã chứng minh được \( \frac{1}{x} + \frac{1}{y} = 1 \).

\(x^3 + y^3 +

3
19 tháng 4

???????????? V ĐĂNG LÊN LMJ

 

19 tháng 4

Đây là câu trl r bn ưi