mng làm nhanh giúp mik vs ah , ai nhanh mik tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sửa ngày thứ 3 thành ngày thứ 2 đi thêm 40km nhé bạn!
Số phân số ngày thứ 2 là :
\(1-\dfrac{2}{5}=\dfrac{3}{5}\)
Quãng đường AB là :
\(40:\dfrac{3}{5}=40x\dfrac{5}{3}=\dfrac{200}{3}\left(km\right)\)
Đáp số...
Bài này ra số lẻ bạn xem lại đề
Số phần quãng đường người đó đi trong ngày thứ ba là:
\(1-\dfrac{2}{5}-\dfrac{1}{3}=\dfrac{4}{15}\left(\text{ quãng đường}\right)\)
Độ dài quãng đường AB là:
\(40\div\dfrac{4}{15}=150\left(km\right)\)
Đáp số: 150150 km

a/
Nếu \(a\ge1\) => vế trái có tận cùng là 8 mà vế phải là 1 số chính phương.
Một số chính phương chỉ có tận cùng là 0;1;4;6;9
=> a=0
\(\Rightarrow5^0+323=b^2\Leftrightarrow18^2=b^2\Rightarrow b=18\)
b/
Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(7^b\) chỉ có tận cùng là 1;3;7;9 là 1 số lẻ
\(\Rightarrow a=0\)
\(\Leftrightarrow2^0+342=7^b\Leftrightarrow7^3=7^b\Rightarrow b=3\)
c/
Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(3^b\) là 1 số lẻ => a=0
\(\Leftrightarrow2^0+80=3^b\Leftrightarrow3^4=3^b\Rightarrow b=4\)
d/
Nếu \(a\ge1\) => vế trái là 1 số lẻ mà VP là 1 số chẵn => a=0
\(\Leftrightarrow35^0+9=2.5^b\Rightarrow10=2.5^b\Leftrightarrow5^b=5\Rightarrow b=1\)

a) \(4^n=2^{n+1}\)
\(\Rightarrow2^{2n}=2^{n+1}\)
\(\Rightarrow2n=n+1\)
\(\Rightarrow n=1\)
b) \(16=\left(n-1\right)^4\)
\(\Rightarrow2^4=\left(n-1\right)^4\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=3\)
c) \(125=\left(2n+1\right)^3\)
\(\Rightarrow5^3=\left(2n+1\right)^3\)
\(\Rightarrow2n+1=5\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=2\)
a, 4n = 2n+1
(22)n = 2n+1
22n = 2n+1
2n = n + 1
2n - n = 1
n = 1
b, 16 = (n-1)4
24 = (n-1)4
2 = n-1
n = 3
c, 125 = (2n + 1)3
53 = (2n+1)3
5 = 2n + 1
2n = 4
n = 2

A = ( 1 - \(\dfrac{1}{5}\)).(1 - \(\dfrac{2}{5}\)).(1 - \(\dfrac{3}{5}\))...(1 - \(\dfrac{2005}{5}\))
A = (1- \(\dfrac{1}{5}\)).(1 - \(\dfrac{2}{5}\)).(1-\(\dfrac{3}{5}\)).(1 - \(\dfrac{4}{5}\)).(1 - \(\dfrac{5}{5}\))....(1 - \(\dfrac{2005}{5}\))
A = (1 - \(\dfrac{1}{5}\)).(1- \(\dfrac{2}{5}\)).(1- \(\dfrac{3}{5}\)).(1- \(\dfrac{4}{5}\)).(1-1)....(1- \(\dfrac{2005}{5}\))
A = (1- \(\dfrac{1}{5}\)).....0...(1- \(\dfrac{2005}{5}\))
A =0

Ta có sơ đồ:
Bi xanh,bi đỏ:l-----l-----l-----l-----l-----l (Tổng 48 viên bi)
Bi vàng: l-----l
Theo sơ đồ,tổng số phần bằng nhau là:5+1=6(phần)
Giá trị của mỗi phần là:48:6=8
Số bi xanh và bi đỏ là:8x5=40(viên bi)
Số bi vàng là:8x1=8(viên bi vàng)
Số bi xanh là:48:2=24(viên bi xanh)
Số bi đỏ là:48-24-8=1616(viên bi đỏ)
Đ/S:8 viên bi vàng,24 bi xanh và 16 bi đỏ.

Bài 1: Tính nhanh:
a, 12,7 + 12,7 + 12,7 + 12,7.8 - 12,7
= 12,7.( 1 + 1 + 1 + 8 - 1)
= 12,7 . 10
= 1270
b, 128.68 + 16.256
= 128.68 + 16.2.128
= 128.(68+ 32)
= 128 .100
= 12800
c,(100 + 42).42 + (200 - 58).58
= 142.42 + 142.58
= 142.(42 + 58)
= 142.100
= 14200
d, 17,8.99 + 17 + 0,8
= 17,8.99 + 17,8
=17,8.(99 + 1)
= 17,8.100
= 1780


a) Ta đặt \(P\left(x\right)=x^2+x+1\)
\(P\left(x\right)=x^2+x-20+21\)
\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)
Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\) nên \(\left(x+5\right)\left(x-4\right)⋮3\).
Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)
Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)
b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)
Nếu \(y=0\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)
a) Ta đặt
�
(
�
)
=
�
2
+
�
+
1
P(x)=x
2
+x+1
�
(
�
)
=
�
2
+
�
−
20
+
21
P(x)=x
2
+x−20+21
�
(
�
)
=
(
�
+
5
)
(
�
−
4
)
+
21
P(x)=(x+5)(x−4)+21
Giả sử tồn tại số tự nhiên
�
x mà
�
(
�
)
⋮
9
P(x)⋮9
⇒
�
(
�
)
⋮
3
⇒P(x)⋮3. Do
21
⋮
3
21⋮3 nên
(
�
+
5
)
(
�
−
4
)
⋮
3
(x+5)(x−4)⋮3.
Mà 3 là số nguyên tố nên suy ra
[
�
+
5
⋮
3
�
−
4
⋮
3
x+5⋮3
x−4⋮3
Nếu
�
+
5
⋮
3
x+5⋮3 thì suy ra
�
−
4
=
(
�
+
5
)
−
9
⋮
3
x−4=(x+5)−9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Nếu
�
−
4
⋮
3
x−4⋮3 thì suy ra
�
+
5
=
(
�
−
4
)
+
9
⋮
3
x+5=(x−4)+9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9
b) Vì x^2+x+1⋮̸9 nên
�
≤
1
⇒
�
∈
{
0
;
1
}
y≤1⇒y∈{0;1}
Nếu
�
=
0
⇒
�
2
+
�
+
1
=
1
y=0⇒x
2
+x+1=1
⇔
�
(
�
+
1
)
=
0
⇔x(x+1)=0
⇔
[
�
=
0
(
�
ℎ
ậ
�
)
�
=
−
1
(
�
�
ạ
�
)
⇔[
x=0(nhận)
x=−1(loại)
Nếu
�
=
1
y=1
⇒
�
2
+
�
+
1
=
3
⇒x
2
+x+1=3
⇔
�
2
+
�
−
2
=
0
⇔x
2
+x−2=0
⇔
(
�
−
1
)
(
�
+
2
)
=
0
⇔(x−1)(x+2)=0
⇔
[
�
=
1
(
�
ℎ
ậ
�
)
�
=
−
2
(
�
�
ạ
�
)
⇔[
x=1(nhận)
x=−2(loại)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$. Khi đó:
$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$
$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$
Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$
-------------------
$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$
$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$
Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$