Tìm a để đa thức A =x^3+ax+x^3 chia hết cho đa thức B = x^2+x-2
Giúp ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(1)=g(2)
=>\(2\cdot1^2+a\cdot1+4=2^2-5\cdot2+b\)
=>a+6=b-6
=>a=b-12
f(-1)=g(5)
=>\(2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5+b\)
=>-a+4+2=b
=>-a+6=b
=>-b+12+6=b
=>-2b=-18
=>b=9
=>a=9-12=-3
thay x = 1 vào f(x), có
f(1) =2.12 + 1a + 4
f(1) =2 + a + 4
f(1) =a + 6
=> f(6) =a + 6
thay x = 2 vào g(x) , có
g(2) =22 - 5.2 + b
g(2) =4 - 10 + b
g(2) =-6 + b
=> g(2) = -6 + b
thay x = -1 vào f(x), có
f(-1) =2.(-1)2 - 1a + 4
f(-1) = 2 + a + 4
f(-1) = 6 + a
=> f(-1) = 6 + a
thay x = 5 vào g(x) , có
g(5) =(5)2 - 5.(5) + b
g(5) = 25 - 25 + b
g(5) = + b
vậy g(5)= b
có f(1) = g(2)
=> a + 6 = -6 + b
=> a + b = 0
=> a = -b hoặc b = -a
có f(-1) = g(5)
=> 6 + a = b
=> 6 = b - a
=> 6 = b - (-b)
=> 6 = b + b
=> b = 3
=> a = -b = -3
\(a)4\left(x+2\right)-\left(5x+1\right)=3x-1\\ =>4x+8-5x-1=3x-1\\ =>-x+7=3x-1\\ =>3x+1=7+1\\ =>4x=8\\ =>x=\dfrac{8}{4}=2\\ b)2\left(5x-2\right)-3\left(x-1\right)=x+2\\ =>10x-4-3x+3=x+2\\ =>7x-1=x+2\\ =>7x-x=2+1\\ =>6x=3\\ =>x=\dfrac{3}{6}=\dfrac{1}{2}\)
\(4.\left(x+2\right)-\left(5x+1\right)=3x-1\\
\Rightarrow4x+8-5x-1=3x-1\\
\Rightarrow-x+7=3x-1\\
\Rightarrow3x+x=7+1\\
\Rightarrow4x=8\\
\Rightarrow x=2\)
Vậy...
\(2.\left(5x-2\right)-3.\left(x-1\right)=x+2\\
\Rightarrow10x-4-3x+1=x+2\\
\Rightarrow7x-3
=x+2\\
\Rightarrow7x-x=2+3\\\Rightarrow6x=5\\
\Rightarrow x=\dfrac{5}{6}\)
Vậy...
\(50+\dfrac{50}{3}+\dfrac{25}{3}+\dfrac{20}{4}+...+\dfrac{100}{98\cdot99}+\dfrac{1}{99}\)
\(=\dfrac{100}{2}+\dfrac{100}{6}+\dfrac{100}{12}+...+\dfrac{100}{98\cdot99}+\dfrac{100}{99\cdot100}\)
\(=100\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=100\cdot\dfrac{99}{100}=99\)
Gọi hai góc so le trong là \(\widehat{AEF};\widehat{EFD}\); Ey;Fx lần lượt là phân giác của góc AEF;góc EFD
Vì AB//CD nên \(\widehat{AEF}=\widehat{EFD}\)(hai góc so le trong)
mà \(\widehat{yEF}=\dfrac{\widehat{AEF}}{2};\widehat{xFE}=\dfrac{\widehat{EFD}}{2}\)
nên \(\widehat{yEF}=\widehat{xFE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ey//Fx
a) TH1: x = 1
=> Giá tiền phải trả là: 11000 (đồng)
TH2: x > 1
=> Giá tiền phải trả là:
11000 + 10000(x - 1)
= 11000 + 10000x - 10000
= 10000x + 1000 (đồng) (1)
b) Người đó đi 50km ta thay x = 50 vào (1) ta có:
10000*50 + 1000
= 500000 + 1000
= 501000 (đồng)
Bài 4: \(8^{10}\cdot125^{10}< =2^n\cdot5^n< =20^{16}\cdot5^{16}\)
=>\(1000^{10}< =10^n< =100^{16}\)
=>\(10^{30}< =10^n< =10^{32}\)
=>30<=n<=32
mà n là số tự nhiên
nên \(n\in\left\{30;31;32\right\}\)
Bài 1:
1: \(3^{-2}\cdot3^4\cdot3^n=3^7\)
=>\(3^n\cdot3^2=3^7\)
=>n+2=7
=>n=7-2=5
2: \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
=>\(2^n\left(\dfrac{1}{2}+4\right)=2^5\cdot9\)
=>\(2^n=9\cdot2^5:\dfrac{9}{2}=2^6\)
=>n=6
Bài 2:
1: \(243>=3^n>=9\)
=>\(3^2< =3^n< =3^5\)
=>2<=n<=5
mà n là số tự nhiên
nên \(n\in\left\{2;3;4;5\right\}\)
2: \(2^{n+3}\cdot2^n=144\)
=>\(2^{2n+3}=144\)
=>\(2n+3=log_2144\)
=>\(2n=log_2144-3\)
=>\(n=\dfrac{log_2144-3}{2}\left(loại\right)\)
Bài 3:
\(10^x:5^y=20^y\)
=>\(10^x=20^y\cdot5^y=100^y=10^{2y}\)
=>x=2y
vậy: \(\left(x;y\right)\in\){(2k;k)|\(k\in N\)}