Bài tập về nhà. Bài 1. Khai triển các hằng đẳng thức sau:
1) (2x + 1) ^ 3
2) (x - 2/3) ^ 3
3) (3x - 1) ^ 3
4) (2/5 * x - 3) ^ *
5) (2 - 3y) ^ 3
6) (3x - 2y) ^ 3
( (4x + 2/3 * y) ^ 3
8) (x ^ 2 - 3) ^ 3
9) (2x ^ 2 - 3) ^ 3
(1/2 * x + y ^ 2) ^ 3 (01
(2x - 1/2 * y) ^ 3 (11
12) (x - y ^ 2) ^ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Đặt A=\(5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x+2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2-4x=x\)
Thay x=15 vào A, ta được:
A=x=15
2: Đặt \(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)
\(=19x^2y^2-11xy^3-8x^3\)
Thay x=0,5 và y=2 vào B, ta được:
\(B=19\cdot0,5^2\cdot2^2-11\cdot0,5\cdot2^3-8\cdot2^3\)
=19-44-64
=-89
3: x=4 nên x+1=5
\(x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
=x-1=4-1=3
4: x=7 nên x+1=8
\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+...+x^2+x-5\)
=x-5=7-5=2
5: \(M=\left(2x-1\right)^2+2\left(2x-1\right)\left(3x+1\right)+\left(3x+1\right)^2\)
\(=\left(2x-1+3x+1\right)^2=\left(5x\right)^2=25x^2\)
6: \(N=\left(3x-1\right)^2-2\left(9x^2-1\right)+\left(3x+1\right)^2\)
\(=\left(3x-1\right)^2-2\left(3x-1\right)\left(3x+1\right)+\left(3x+1\right)^2\)
\(=\left(3x-1-3x-1\right)^2=\left(-2\right)^2=4\)
a:
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(Q=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
\(=\dfrac{3\left(x-3\right)+x+3+18}{x^2-9}\)
\(=\dfrac{3x-9+x+21}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
b: \(R=Q\cdot x=\dfrac{4x}{x-3}=\dfrac{4x-12+12}{x-3}=4+\dfrac{12}{x-3}\)
Để R nguyên thì \(12⋮x-3\)
=>\(x-3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(x\in\left\{4;2;5;1;6;0;7;-1;9;-3;15;-9\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;1;6;0;7;-1;9;15;-9\right\}\)
`(5x - 1)^6 = 729`
`=> (5x - 1)^6 = 3^6`
`=> 5x - 1 = 3` hoặc `5x - 1 = -3`
`=> 5x = 4` hoặc `5x = -2`
`=> x = 4/5` hoặc `x = -2/5`
-------------------
`(2x + 1)^3 = -0,001`
`=> (2x + 1)^3 = (-0,1)^3`
`=> 2x + 1 = -0,1`
`=> 2x = -1001/1000`
`=> x = -1001/2000`
a: \(2\cdot16>=2^n>4\)
=>\(2^5>=2^n>2^2\)
=>2<n<=5
mà n là số tự nhiên
nên \(n\in\left\{3;4;5\right\}\)
b: \(9\cdot27< =3^n< =243\)
=>\(243< =3^n< =243\)
=>\(3^n=243\)
=>n=5
c: \(27< 3^n< 3\cdot81\)
=>\(3^3< 3^n< 3^5\)
=>3<n<5
mà n là số tự nhiên
nên n=4
d: \(4^{15}\cdot9^{15}< 2^n\cdot3^n< 18^{16}\cdot2^{16}\)
=>\(36^{15}< 6^n< 36^{16}\)
=>\(6^{30}< 6^n< 6^{32}\)
=>30<n<32
mà n là số tự nhiên
nên n=31
\(a.2\cdot16\ge2^n>4\\ 2\cdot2^4\ge2^n>2^2\\ 2^5\ge2^n>2^2\\ 5\ge n>2\\ n\in\left\{3;4;5\right\}\\ b.9\cdot27\le3^n\le243\\ 3^2\cdot3^3\le3^n\le3^5\\ 3^5\le3^n\le3^5\\ n=5\\ c.27< 3^n< 3\cdot81\\ 3^3< 3^n< 3\cdot3^4\\ 3^3< 3^n< 3^5\\ 3< n< 5\\ n=4\\ d.4^{15}\cdot9^{15}< 2^n\cdot3^n< 18^{16}\cdot2^{16}\\ 36^{15}< 6^n< 36^{16}\\ \left(6^2\right)^{15}< 6^n< \left(6^2\right)^{16}\\ 6^{30}< 6^n< 6^{32}\\ n=31\)
a/
Gọi d là ước chung của 2n+1 và 3n+1 nên
\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)=6n+2⋮d\)
\(\Rightarrow6n+3-\left(6n+2\right)=1⋮d\Rightarrow d=1\)
Điều đó chứng tỏ rằng 2n+1 và 3n+1 là 2 số nguyên tố sánh đôi
Các câu b;c;d làm tương tự
\(a.\left(\dfrac{2}{33}\right)^n\cdot11^n=\dfrac{4}{9}\\ \left(\dfrac{2}{33}\cdot11\right)^n=\left(\dfrac{2}{3}\right)^2\\ \left(\dfrac{2}{3}\right)^n=\left(\dfrac{2}{3}\right)^2\\ n=2\\ b.\dfrac{125}{5^n}=5\\\dfrac{ 5^3}{5^n}=5\\ 5^{3-n}=5^1\\ 3-n=1\\ n=3-1\\ n=2\\ c.\dfrac{\left(-6\right)^n}{36}=-216\\ \dfrac{\left(-6\right)^n}{\left(-6\right)^2}=\left(-6\right)^3\\ =\left(-6\right)^{n-2}=\left(-6\right)^3\\ n-2=3\\ n=2+3\\ n=5\\ d.20^n:14^n=\dfrac{10}{7}\\ \left(\dfrac{20}{14}\right)^n=\dfrac{10}{7}\\ \left(\dfrac{10}{7}\right)^n=\left(\dfrac{10}{7}\right)^1\\ n=1\)
\(\left\{{}\begin{matrix}0,2x+0,5y=0,7\\4x+10y=9\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}4x+10y=3,5\\4x+10y=9\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}0x=5,5\left(ko\exists\right)\\4x+2y=3,5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}0,2x+0,5y=0,7\\4x+10y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+10y=14\\4x+10y=9\end{matrix}\right.\)
=> Hpt vô nghiệm
\(\dfrac{-4}{9}\cdot x=\dfrac{-2}{7}:\dfrac{4}{21}\\ -\dfrac{4}{9}\cdot x=\dfrac{-2}{7}\cdot\dfrac{21}{4}\\ -\dfrac{4}{9}\cdot x=\dfrac{-3}{2}\\ x=-\dfrac{3}{2}:\dfrac{-4}{9}\\ x=\dfrac{3}{2}\cdot\dfrac{9}{4}\\ x=\dfrac{27}{8}\)
Vậy: ...
1: \(\left(2x+1\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3\)
\(=8x^3+12x^2+6x+1\)
2: \(\left(x-\dfrac{2}{3}\right)^3=x^3-3\cdot x^2\cdot\dfrac{2}{3}+3\cdot x\cdot\left(\dfrac{2}{3}\right)^2-\left(\dfrac{2}{3}\right)^3\)
\(=x^3-2x^2+\dfrac{4}{3}x-\dfrac{8}{27}\)
3: \(\left(3x-1\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3\)
\(=27x^3-27x^2+9x-1\)
5: \(\left(2-3y\right)^3=2^3-3\cdot2^2\cdot3y+3\cdot2\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8-36y+54y^2-27y^3\)
6: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^3-54x^2y+36xy^2-8y^3\)
7: \(\left(4x+\dfrac{2}{3}y\right)^3=\left(4x\right)^3+3\cdot\left(4x\right)^2\cdot\dfrac{2}{3}y+3\cdot4x\cdot\left(\dfrac{2}{3}y\right)^2+\left(\dfrac{2}{3}y\right)^3\)
\(=64x^3+32x^2y+\dfrac{16}{3}xy^2+\dfrac{8}{27}y^3\)
8: \(\left(x^2-3\right)^3=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot3+3\cdot x^2\cdot3^2-3^3\)
\(=x^6-9x^4+27x^2-27\)
9: \(\left(2x^2-3\right)^3=\left(2x^2\right)^3-3\cdot\left(2x^2\right)^2\cdot3+3\cdot2x^2\cdot3^2-3^3\)
\(=8x^6-36x^4+54x^2-27\)
10: \(\left(\dfrac{1}{2}x+y^2\right)^3\)
\(=\left(\dfrac{1}{2}x\right)^3+3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y^2+3\cdot\dfrac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\)
\(=\dfrac{1}{8}x^3+\dfrac{3}{4}x^2y^2+\dfrac{3}{2}xy^4+y^6\)
11: \(\left(2x-\dfrac{1}{2}y\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\dfrac{1}{2}y+3\cdot2x\cdot\left(\dfrac{1}{2}y\right)^2-\left(\dfrac{1}{2}y\right)^3\)
\(=8x^3-6x^2y+\dfrac{3}{2}xy^2-\dfrac{1}{8}y^3\)
12: \(\left(x-y^2\right)^2=x^2-2\cdot x\cdot y^2+\left(y^2\right)^2=x^2-2xy^2+y^4\)