Tìm giá trị nguyên lớn nhất của x thỏa mãn:
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
(3/5)5.x = (3/4)7
(3/5)5 ÷ (3/5)5.x = (3/4)7 ÷ (3/5)5
x = 37/47. 55/35
x = \(\frac{3^7.5^5}{4^7.3^5}\)
x = \(\frac{3^2.5^5}{4^7}\)
Tự làm phần còn lại... To be continued...
Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
B =\(\left(200^{-2}-1\right)\left(199^{-2}-1\right)...\left(101^{-2}-1\right)=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}...\frac{1-101^2}{101^2}=\frac{1^2-200^2}{200^2}.\frac{1^2-199^2}{199^2}....\frac{1^2-101^2}{101^2}\)
\(=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}...\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)
\(=-\left(\frac{199.201}{200^2}.\frac{198.200}{199^2}...\frac{100.102}{101^2}\right)=-\frac{199.201.198.200..100.102}{200.200.199.199...101.101}\)
\(=-\frac{\left(199.198...100\right)\left(201.200...102\right)}{\left(200.199...101\right).\left(200.199...101\right)}=-\frac{100.201}{200.101}=-\frac{201}{202}\)
Bài giải
\(B=\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(B=\left[\left(\frac{1}{200}\right)^2-1^2\right]\left[\left(\frac{1}{199}\right)^2-1^2\right]\left[\left(\frac{1}{198}\right)^2-1^2\right]...\left[\left(\frac{1}{101}\right)^2-1^2\right]\)
\(B=\left(\frac{1}{200}+1\right)\left(\frac{1}{200}-1\right)\left(\frac{1}{199}+1\right) \left(\frac{1}{199}-1\right)..\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)
\(B=\frac{201}{200}\cdot\frac{-199}{200}\cdot\frac{200}{199}\cdot\frac{-198}{199}\cdot...\cdot\frac{-100}{101}\cdot\frac{102}{101}\)
\(B=\frac{201\cdot\left(-199\right)\cdot200\cdot\left(-198\right)\cdot...\cdot\left(-100\right)\cdot102}{200\cdot200\cdot199\cdot199\cdot...\cdot101\cdot101}=\frac{100\cdot201}{200\cdot101}=\frac{201}{202}\)
Bài làm:
Ta có: \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)
\(A=\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{49.51}\right)\)
\(A=\frac{1}{12}-\frac{1}{4.49.51}< \frac{1}{12}\)
Vậy \(A< \frac{1}{12}\)
Từ đề bài suy ra\(4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}=\frac{1}{3}-\frac{1}{49.51}< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{12}\left(đpcm\right)\)
\(A=\left(0,3.5-0,5:\frac{1}{3}\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=\left(0,3.5-0,5.3\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=\left(1,5-1,5\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=0.\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=0\)
VẬY \(A=0\)
(0,3.5-0,5:1/3).(1/2006^2+1/2008^2)
(1,5-1,5).(1/200^2+1/2008^2)
0.(1/2006^2+1/2008^2)
0
\(3x+\frac{1}{4}=5\frac{1}{3}\)
\(\Rightarrow3x+\frac{1}{4}=\frac{16}{3}\)
\(\Rightarrow3x=\frac{16}{3}-\frac{1}{4}\)
\(\Rightarrow3x=\frac{61}{12}\)
\(\Rightarrow x=\frac{61}{12}:3\)
\(\Rightarrow x=\frac{61}{36}\)
Vậy \(x=\frac{61}{36}.\)
\(-3\frac{1}{2}-2x=0,8\)
\(\Rightarrow-\frac{7}{2}-2x=\frac{4}{5}\)
\(\Rightarrow-2x=\frac{4}{5}+\frac{7}{2}\)
\(\Rightarrow-2x=\frac{43}{10}\)
\(\Rightarrow x=\frac{43}{10}:\left(-2\right)\)
\(\Rightarrow x=-\frac{43}{20}\)
Vậy \(x=-\frac{43}{20}.\)
-7/2-2x=4/5
2x=-7/2-4/5
2x=-43/10
x=-43/10:2
x=-43/20
vậy x=-43/20
\(\frac{2}{3}+2\left(x-1\right)=\frac{4}{5}\)
=> \(2\left(x-1\right)=\frac{4}{5}-\frac{2}{3}\)
=> \(2\left(x-1\right)=\frac{2}{15}\)
=> \(x-1=\frac{1}{15}\)
=> \(x=\frac{16}{15}\)
2/3+2(x+1)=4/5
2(x+1)=4/5-2/3
2(x+1)=2/15
(x+1)=2/15:2
(x+1)=1/15
x=1/15-1
x=-14/15
vậy x=-14/15
Giả sử \(\frac{a}{b}=\frac{c}{d}\)Suy ra điều ta cần chứng minh là \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)
Theo tính chất của dãy tỉ số bằng nhau :
\(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\\\frac{a}{b}=\frac{3c}{3d}=\frac{a+3c}{b+3d}\end{cases}}< =>\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)
Vậy ta có điều phải chứng minh
Bài giải
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}-\frac{4}{7}< x+\frac{4}{7}-\frac{4}{7}< \frac{7}{12}-\frac{4}{7}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1,5...< x< 0,01...\)
\(\Rightarrow\text{ }x=-1\)