Tìm tất cả các số tự nhiên a khác 0 và b khác 0, sao cho a.b = 384 và ƯCLN (a,b) = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 +4 +7 + 10 +...+ 2020
Xét dãy số: 1; 4; 7; 10; ...2020
Dãy số trên là dãy số cách đều với khoảng cách là: 4 - 1 = 3
Số số hạng của dãy số trên là: (2020 - 1) : 3 + 1 = 674
Tổng của dãy số trên là: (2020 + 1) x 674 : 2 = 681077
a: \(n+6⋮n+1\)
=>\(n+1+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;5\right\}\)
=>\(n\in\left\{0;4\right\}\)
b: \(4n+9⋮2n+1\)
=>\(4n+2+7⋮2n+1\)
=>\(7⋮2n+1\)
mà \(2n+1>=1\left(n\in N\right)\)
nên \(2n+1\in\left\{1;7\right\}\)
=>\(n\in\left\{0;3\right\}\)
\(S=1+3^2+3^4+3^6+3^8+...+3^{2020}+3^{2022}\)
\(=\left(1+3^2+3^4+3^6\right)+\left(3^8+3^{10}+3^{12}+3^{14}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}+3^{2022}\right)\)
\(=\left(1+3^2+3^4+3^6\right)+3^8\left(1+3^2+3^4+3^6\right)+...+3^{2016}\left(1+3^2+3^4+3^6\right)\)
\(=820\left(1+3^8+...+3^{2016}\right)⋮820\)
`a, 2x + 5^2 . 3 = 11`
`=> 2x + 25 . 3 = 11`
`=> 2x + 75 = 11`
`=> 2x = 11 - 75`
`=> 2x = -64`
`=> x = -64 : 2`
`=> - 32`
Vậy `x = -32`
`b, 5^3 . 4 - 2(x - 7) = 58`
`=> 125 . 4 - 2(x - 7) = 58`
`=> 500 - 2(x - 7) = 58`
`=> 2(x - 7) = 500 - 58`
`=> 2(x - 7) = 442`
`=> x - 7 = 442 : 2`
`=> x - 7 = 221`
`=> x = 221 + 7`
`=> x = 228`
Vậy `x = 228`
\(\dfrac{x-1}{2021}\) + \(\dfrac{x-2}{2022}\) = \(\dfrac{x-3}{2022}\) + \(\dfrac{x-4}{2004}\)
(\(\dfrac{x-1}{2021}\) + 1) + (\(\dfrac{x-2}{2022}\) ) = (\(\dfrac{x-3}{2023}\)+ 1) + (\(\dfrac{x-4}{2023}\) + 1)
\(\dfrac{x-1+2021}{2021}\) + \(\dfrac{x-2+2022}{2022}\) = \(\dfrac{x-3+2023}{2023}\) + \(\dfrac{x-2+2024}{2024}\)
\(\dfrac{x-2020}{2021}\) + \(\dfrac{x+2020}{2022}\) = \(\dfrac{x-2020}{2023}\) + \(\dfrac{x-2020}{2024}\)
(\(x-2020\)).(\(\dfrac{1}{2021}\) + \(\dfrac{1}{2022}\)) - (\(x-2020\))(\(\dfrac{1}{2023}\) + \(\dfrac{1}{2024}\)) = 0
\(\left(x-2020\right)\).(\(\dfrac{1}{2021}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\)) = 0
Vì (\(\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}-\dfrac{1}{2024}\)) > 0
Nên \(x\) - 2020 = 0
\(x=2020\)
Vậy \(x=2020\)
Giải: Vì 70 ⋮ \(x\); 84 \(⋮\) \(x\); 120 \(⋮\) \(x\)
⇒ \(x\) \(\in\) Ư(70; 84; 120)
70= 2.5.7; 84 = 22.3.7; 120 = 23.3.5
ƯCLN(70; 84; 120) = 2
\(x\) \(\in\) Ư(2) = {1; 2} Vì \(x\) > 8 nên không có giá trị nào của \(x\) thỏa mãn đề bài.
Kết luận: \(x\) \(\in\) \(\varnothing\)
1 + 3 + 5 + ... + (2n - 3) + (2n - 1) = 225
Xét dãy số: 1; 3; 5;...;2n - 3; 2n - 1
Đây là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1)n : 2 = 225
2n.n : 2 = 225
(2:2).(n.n) = 225
n2 = 152
\(\left[{}\begin{matrix}n=-15\\n=15\end{matrix}\right.\) (n = - 15 loại)
Vậy n = 15
A.
`X+20=36`=>`X=36-20=16`
B.
=>`3(X+5)=45-15=30`
=>`X+5=30:3=10`
=> `X=10-5=5`
C.
=>`2X=12-8=4`
=>`X=4:2=2`
Vì ƯCLN (a; b) = 8 nên ta có: \(\left\{{}\begin{matrix}a=8d\\b=8k\end{matrix}\right.\)(d;k)=1; d;k \(\in\) N*
tích của a và ba là: 8d.8k = 384 ⇒d.k = 384 : 8 : 8
⇒ d.k = 6; Ư(6) = {1; 2; 3; 6}
Lập bảng ta có:
Theo bảng trên ta có: (a; b) = (8; 48); (16; 24); (24; 16); (48; 8)
Kết luận các cặp số tự nhiên thỏa mãn đề bài lần lượt là:
(a; b) = (8; 48); (16; 24); (24; 16); (48 ; 8)
Do ƯCLN(a; b) = 8 nên đặt a = 8m, b = 8n (ƯCLN(m, n) = 1)
Khi đó BCNN(a, b) = BCNN(8m, 8n) = 384
⇒ 8m.n = 384
⇒ mn = 384 : 8 = 48
⇒ mn = 1.48 = 3.16 = 16.3 = 48.1
⇒ (m; n) ∈ {(1; 48); (3; 6); (16; 3); (48; 1)}
⇒ (a; b) ∈ {(8; 384); (24; 128); (128; 24); (384; 8)}