tìm chữ số tận cùng của thương trong phép chia:
\(3^{2^{1930}}+2^{9^{1945}}-19^{5^{1980}}\) cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)
Vậy \(3^{2^{2003}}\)có tận cùng là 9
Đây không phải là bài lớp 9
Ta xét hệ \(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\left(1\right)\\x^2+y^2+x+y-4=0\left(2\right)\end{cases}}\)
Ta có: \(\left(1\right)\Leftrightarrow y^2-\left(x+1\right)y-2x^2+5x-2=0\)
\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left[\frac{\left(x+1\right)^2}{4}+2x^2-5x+2\right]=0\)
\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\frac{9x^2-18x+9}{4}=0\)\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left(\frac{3x-3}{2}\right)^2=0\)
\(\Leftrightarrow\left(y-\frac{x+1}{2}-\frac{3x-3}{2}\right)\left(y-\frac{x+1}{2}+\frac{3x-3}{2}\right)=0\)\(\Leftrightarrow\left(y-2x+1\right)\left(y+x-2\right)=0\Leftrightarrow\orbr{\begin{cases}y-2x+1=0\\y+x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=2x-1\\y=2-x\end{cases}}\)
TH1: \(y=2x-1\), thay vào phương trình (2), ta được: \(x^2+\left(2x-1\right)^2+x+2x-1-4=0\)
\(\Leftrightarrow5x^2-x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=-\frac{4}{5}\Rightarrow y=\frac{-13}{5}\end{cases}}\)
TH2: \(y=2-x\), thay vào phương trình (2), ta được: \(x^2+\left(2-x\right)^2+x+2-x-4=0\)
\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x-1\right)^2=0\Leftrightarrow x=1\Rightarrow y=1\)
Vậy hệ có 2 nghiệm \(\left(x;y\right)\in\left\{\left(1;1\right);\left(-\frac{4}{5};-\frac{13}{5}\right)\right\}\)
\(+,2x^2+xy-y^2-5x+y+2=0\)
\(\Leftrightarrow x^2+\frac{xy}{2}-\frac{y^2}{2}-\frac{5x}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow x^2+x\left(\frac{y}{2}-\frac{5}{2}\right)-\frac{y^2}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow x^2+2x.\frac{y-5}{4}+\left(\frac{y-5}{4}\right)^2-\left(\frac{y-5}{4}\right)^2-\frac{y^2}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{y^2-10y+25}{16}-\frac{y^2}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{9y^2-18y+9}{16}=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\left(\frac{3y-3}{4}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}-\frac{3y-3}{4}\right)\left(x+\frac{y-5}{4}+\frac{3y-3}{4}\right)=0\)
\(\Leftrightarrow\left(x+\frac{-y-1}{2}\right)\left(x+y+2\right)=0\)
\(\orbr{\begin{cases}x=\frac{y+1}{2}\\x=-y-2\end{cases}}\)
vậy ....
Xét \(9^x\)
Nếu \(x=2k\)thì \(9^x=9^{2k}=81^k\)Luôn tận cùng là 1
Nếu \(x=2k+1\)thì \(9^x=9^{2k+1}=9.81^x\)Luôn tận cùng là 9
Ta có: \(9^9\)tận cùng là 1 là số lẻ
\(\Rightarrow9^{9^9}\)tận cùng là 1, đồng thời cũng là số lẻ
\(\Rightarrow9^{9^{9^9}}\)cũng tận cùng là 1
\(\Rightarrow9^{9^{9^9}}-9^{9^9}\)tận cùng là 0 nên chia hết cho 10
Bạn ơi mình nhầm nhé.
\(9^9;9^{9^9};9^{9^{9^9}}\)đều tận cùng là 9, mình viết nhầm thành 1 nha. Xin lỗi bạn.
Đầu tiên ta xét chữ số tận cùng của \(4^{2003}\). Nhận thấy \(4^{2003}\) có thể đưa về dạng \(4^{4n+3}\) .Mặt khác theo tính chất: Các số có tận cùng là 1,4,5,6,9 khi nâng lên lũy thừa bậc 4n + 3 thì không thay đổi chữ số tận cùng
Ta có: \(4^{2003}=4^{2000+3}=4^{4.500+3}=...4\)
\(\Rightarrow2^{4^{2003}}=2^{...4}=...6\) (theo tính chất các số có tận cùng là 2,4,8 khi nâng lên lũy thừa bậc 4n thì có tận cùng là 6)
Vậy \(2^{4^{2003}}\) có tận cùng là 6