Khi sao chép công thức từ ô này sang ô kia, hàm thay đổi ra sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thử vẽ Sketchpad cũng đẹp ấy chứ:))
Gọi I là giao điểm của KB và HD;J là giao điểm của CK và HD;O là giao điểm của CM và KH.
Hình vuông ABCD có \(BD\) là đường chéo nên \(\widehat{KDM}=45^0\)
Xét tam giác KDM có \(\widehat{DKM}=90^0;\widehat{KDM}=45^0\Rightarrow\Delta KDM\) vuông cân tại K.Suy ra KD=KM ( 1 )
Tứ giác AHMK có \(\widehat{KAH}=\widehat{AHM}=\widehat{MKA}=90^0\) nên tứ giác AHMK là hình chữ nhật => AH=MK ( 2 )
Từ ( 1 );( 2 ) suy ra AH=DK.
Xét \(\Delta ADH\) và \(\Delta KDC\) có:KD=AH;DC=AD;\(\widehat{DAH}=\widehat{KDC}=90^0\)
\(\Rightarrow\Delta AHD=\Delta DCK\left(2cgv\right)\Rightarrow\widehat{ADH}=\widehat{DCJ}\)
Ta có:\(\widehat{ADJ}+\widehat{JDC}=90^0\Rightarrow\widehat{JDC}+\widehat{DCJ}=90^0\Rightarrow\widehat{DJC}=90^0\left(3\right)\)
Lại có:\(AD=AB\Rightarrow AK+KD=AH+HB\Rightarrow AK=HB\left(AH=KD\right)\)
Xét \(\Delta ABK\) và \(\Delta BCH\) có:\(AB=BC;HB=AK;\widehat{KAB}=\widehat{HBC}=90^0\Rightarrow\Delta ABK=\Delta BCH\left(2cgv\right)\)
\(\Rightarrow\widehat{ABK}=\widehat{HCB}\)
Mà \(\widehat{ABK}+\widehat{KBC}=90^0\Rightarrow\widehat{KBC}+\widehat{HCB}=90^0\Rightarrow CH\perp BK\left(4\right)\)
Từ ( 3 );( 4 ) suy ra I là trực tâm tam giác HKC.
Ta sẽ chứng minh CM đi qua I.Thật vậy !
Xét \(\Delta AHK\) và \(\Delta CMQ\) có:\(AK=MQ;AH=CQ\left(=DK\right);\widehat{KAH}=\widehat{MQC}=90^0\)
\(\Rightarrow\Delta AHK=\Delta QCM\left(2cgv\right)\Rightarrow\widehat{AHK}=\widehat{QCM}\) mà \(AH\perp QC\Rightarrow KH\perp CM\)( ai đó cm cái này với !! )
=> CM đi qua I hay \(CM\perp HK\)
\(Ta có : 1 + 2 + 3 + ... + 100+ 50 + 53\)\( + ... + 197\)
\(= ( 1 + 2 + 3 + ... + 100 ) + ( 50 + 53 + ...\)\(+ 197)\)
\(=[(100+1)÷1+1].[(100+1)÷2]+ \)\([ ( 197 - 50) ÷3+ 1 ] . [ ( 197+ 1)÷2]\)
\(=5050 + 6175\)
\(= 11225\)
a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)
Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)
Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)
Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)
b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3
Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)
=> x + 2 = 3(x - 3)
=> x + 2 = 3x - 9
=> x - 3x = -9 - 2
=> -2x = -11
=> x = 11/2 (tm)
Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)
c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3
Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)
Để M \(\in\)Z <=> 3 \(⋮\)x - 3
=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 |
x | 4 | 2 (ktm) | 6 | 0 |
Vậy ...
Đổi 1h30 phút = 90 phút
1 h 20 phút = 80 phút
Gọi Vận tốc xe 1 đi được là x; vận tốc xe 2 đi là y ( x, y > 0; m/phút)
Mỗi phút xe 1 đi chậm hơn xe 2 là 100 m
=> vận tốc xe 1 bé hơn vận tốc xe hai là 100 m/phút
=> y - x = 100
Có: Quãng đường AB là: x.90 = y.80 => \(\frac{x}{8}=\frac{y}{9}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{9}=\frac{y-x}{9-8}=100\)
=> x = 800 (m/phút) =48km/h
y = 900 ( m/phút) = 54 km/h
Gọi độ dài 3 cạnh của tam giác là : a, b, c. ( >0 ; cm )
Độ dài ba cạnh lần lượt tỉ lệ nghịch với 2; 3; 6 nên \(2a=3b=6c\)
và a > b > c
=> \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}\) và a - c = 6
Áp dụng dãy tỉ số bằng nhau: \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}=\frac{a-c}{\frac{1}{2}-\frac{1}{6}}=\frac{6}{\frac{1}{3}}=18\)
=> a = 9; b = 6; c = 3
=> chu vi của tam giác là: 9 + 6 + 3 = 18 cm
Khi sao chép 1 ô có nội dung là công thức chứa địa chỉ thì các địa chỉ được điều chỉnh để giữ nguyên vị trí tương đối giữa ô chứa công thức và ô có địa chỉ trong công thức.
Học tốt~
#Dũng