tam giác ABC cân tại A,H là trung điểm của BC
a.Chứng minh tam giác ABH =tam giác AHC và AH vuông góc với BC
b,kẻ HM vuông góc với AC tại M, kẻ HN vuông góc với AC tại N.Chứng minh tam giác AHM=Tam giác AHN
c. Gọi I là giao điểm của MH và AC,K là giao điểm của NH và AB. Chứng minh tam giác AIK là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x, y, z là ba số cần tìm
Do x, y, z tỉ lệ thuận với 3; 4; 5 nên:
x/3 = y/4 = c/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = c/5 = (a + b + c)/(3 + 4 + 5) = 552/12 = 46
x/3 = 46 ⇒ x = 46.3 = 138
y/4 = 46 ⇒ y = 46.4 = 184
z/5 = 46 ⇒ z = 46.5 = 230
Vậy ba số cần tìm là 138; 184; 230
cho 30 đường thẳng phân biệt đi qua tâm O . hỏi có bao nhiêu cặp góc đối đỉnh ( không tính góc bẹt )
Bài 10
Do a và b tỉ lệ thuận với 7 và 9
⇒ a/7 = b/9
⇒ 3a/21 = 2b/18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3a/21 = 2b/18 = (3a - 2b)/(21 - 18) 30/3 = 10
3a/21 = 10 ⇒ a = 10.21:3 = 70
2b/18 = 10 ⇒ b = 10.18:2 = 90
Vậy a = 70; b = 90
Bài 9
Do x và y tỉ lệ thuận với 3 và 5
⇒ x/3 = y/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/5 = (x + y)/(3 + 5) = 24/8 = 3
x/3 = 3 ⇒ x = 3.3 = 9
y/5 = 3 ⇒ y = 5.3 = 15
Vậy x = 9; y = 15
Lời giải:
Vì $|y|\geq 0$ với mọi $y$ nên:
$(x+3)(1-x)=|y|\geq 0$. Khi đó sẽ có 2 TH xảy ra:
TH1: $x+3\geq 0; 1-x\geq 0$
$\Rightarrow 1\geq x\geq -3$
Mà $x$ nguyên nên $x\in \left\{1; 0; -1; -2; -3\right\}$
Nếu $x=1$ thì: $|y|=0\Rightarrow y=0$
Nếu $x=0$ thì $|y|=3\Rightarrow y=\pm 3$
Nếu $x=-1$ thì $|y|=4\Rightarrow y=\pm 4$
Nếu $x=-2$ thì $|y|=3\Rightarrow y=\pm 3$
Nếu $x=-3$ thì $|y|=0\Rightarrow y=0$
TH2: $x+3\leq 0; 1-x\leq 0\Rightarrow x\geq 1$ và $x\leq -3$ (vô lý) - loại.
a. Xét tam giác AEB và tam giác DEC có: BE=EC( E là trđ của BC. AE= DE( gt) góc AEB= góc DEC(2 góc đối đỉnh) suy ra tâm giác AEB= tam giác DEC. b. Xét ABDC có: AE=ED. BE= CE. suy ra ABDC là hbh (dhnb)
`#3107.101107`
`a,`
Xét $\triangle ABH$ và $\triangle ACH$:
`AB = AC` $(\triangle ABC$cân tại A`)`
\(\widehat{B}=\widehat{C}\) $(\triangle ABC$cân tại A`)`
`HB = HC ( H` là trung điểm của BC`)`
$=> \triangle ABH = \triangle ACH (c - g - c)$
Vì $\triangle ABH = \triangle ACH$
`=>`\(\widehat{AHB}=\widehat{AHC}\left(\text{2 góc tương ứng}\right)\)
Mà `2` góc này nằm ở vị trí kề bù
`=>` \(\widehat{AHB}+\widehat{AHC}=180^0\)
`=>` \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\) `=> AH \bot BC`
`b,`
Vì $\triangle ABH = \triangle ACH (a)$
`=>`\(\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\)
Xét $\triangle AHM$ và $\triangle AHN$:
AH chung
\(\widehat{MAH}=\widehat{NAH}\left(CMT\right)\)
\(\widehat{AMH}=\widehat{ANH}\left(=90^0\right)\)
$=> \triangle AHM = \triangle AHN (ch - gn)$
`c,`
Xét $\triangle HMB$ và $\triangle HNC$:
\(\widehat{HMB}=\widehat{HNC}\left(=90^0\right)\)
`HB = HC` `(`gt`)`
\(\widehat{HBM}=\widehat{HCN}\) $(\triangle ABC$ cân tại A`)`
$=> \triangle HMB = \triangle HNC (ch - gn)$
`=>`\(\widehat{BHM}=\widehat{CHN}\left(2\text{ góc tương ứng}\right)\) `(1)`
Vì \(\left\{{}\begin{matrix}\widehat{MHB}+\widehat{KHB}=\widehat{MHK}\\\widehat{NHC}+\widehat{IHC}=\widehat{NHI}\end{matrix}\right.\)
Mà \(\widehat{MHK}=\widehat{NHI}\left(\text{đối đỉnh}\right)\) `(2)`
Từ `(1)` và `(2)` `=>` \(\widehat{KHB}=\widehat{IHC}\)
Xét $\triangle KHB$ và $\triangle IHC$:
\(\widehat{KBH}=\widehat{ICH}\left(\widehat{ABC}=\widehat{ACB}\right)\)
`HB = HC`
\(\widehat{KHB}=\widehat{IHC}\)
$=> \triangle KHB = \triangle IHC (g - c - g)$
`=> BK = CI` `(2` cạnh tương ứng`)`
Ta có:
`AK = AB + BK`
`AI = AC + CI`
Mà `AB = AC; BK = CI`
$=> AK = AI => \triangle AIK$ cân tại A.