Cho góc xOy trên tia õ lấy điểm A trên tia Oy lấy điểm B sao cho OA=OB . kẻ tia phân giác Ót của góc xOy cắt AB ở M. a. Chứng minh MA=MB. b. Góc OMA = góc OMB
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


NT
0


NT
Nguyễn Thị Thương Hoài
Giáo viên
VIP
1 tháng 1 2024
a; |2\(x\) - 4| + |3y + 21| = 0
Vì |2\(x\) - 4| ≥ 0 ∀ \(x\); |3y + 21| ≥ 0 ∀ \(x\)
vậy |2\(x\) - 4| + |3y + 21| = 0
⇔ \(\left\{{}\begin{matrix}2x-4=0\\3y+21=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
1 tháng 1 2024
a)
\(\left|2x-4\right|+\left|3y+21\right|=0\)
Ta thấy:\(\left|2x-4\right|\ge0\forall x;\left|3y+21\right|\ge0\forall y\)
Để \(\left|2x-4\right|+\left|3y+21\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-4=0\\3y+21=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\3y=-21\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;-7\right)\) b) \(\left|2x-12\right|+\left|3y+9\right|=-\left|x+y+z\right|\) Vì \(\left|2x-12\right|\ge0;\left|3y+9\right|\ge0;-\left|x+y+z\right|\le0\) \(\Rightarrow\left[{}\begin{matrix}2x-12=0\\3y+9=0\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\y=-3\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\y=-3\\z=-3\end{matrix}\right.\) Vậy \(\left(x;y;z\right)=\left(6;-3;-3\right)\)
a. OA=OB
⇒ΔOAB cân tại O
mà OM là phân giác góc AOB
nên OM là đường trung tuyến ΔAOB
⇒M là trung điểm AB ⇒MA=MB
b. Xét ΔOAM và ΔOBM, có
OA=OB
OM chung
MA=MB
⇒ΔOAM = ΔOBM
nên OMA=OMB (đpcm)