So sánh
A = \(\dfrac{2022^{2023}+1}{2022^{2024}+1}\) và B = \(\dfrac{2022^{2022}+1}{2022^{2023}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(- 12)\(^2\) . x = 56 - [ (- 10) . 13 . x]
144 . x = 56 - [ -130 . x]
144 . x + (-130) . x = 56
14 . x = 56
x = 56 : 14
x = 4
Vậy x = 4
(-12)2..\(x\) = 56 - [(-10.13.\(x\)]
144\(x\) = 56 + 130\(x\)
144\(x-130x\) = 56
14\(x=56\)
\(x=56:14\)
\(x=4\)
Vậy \(x=4\)
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
12% của số 150 là số:
150 x 12 : 100 = 18
Đáp số: 18
(\(\dfrac{1}{2}\))\(x\) - \(\dfrac{1}{4}\) = 0
(\(\dfrac{1}{2}\))\(x\) = \(\dfrac{1}{4}\)
(\(\dfrac{1}{2}\))\(^x\) = (\(\dfrac{1}{2}\))2
\(x=2\)
Vậy \(x=2\)
`(1/2)^x - 1/4 = 0`
`=> (1/2)^x = 0 +1/4`
`=> (1/2)^x = 1/4`
`=> (1/2)^x = (1/2)^2`
`=> x =2`
Vậy `x=2`
Giải:
\(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{5}\) ⇒ (\(\dfrac{x}{2}\))3 = \(\dfrac{x}{2}.\dfrac{y}{3}.\dfrac{z}{5}\) = \(\dfrac{810}{30}\) = 27
⇒ (\(\dfrac{x}{2}\))3 = (3)3 ⇒ \(\dfrac{x}{2}\) = 3 ⇒ \(x\) = 3.2 ⇒ \(x=6\)
⇒ \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{5}\) = \(\dfrac{6}{2}\) = 3 ⇒ y = 3.3 = 9; z = 3.5 = 15
Vậy(\(x;y;z\)) = (6; 9; 15)
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).
Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).
Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).
Từ đây ta có:
\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)
Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).
Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).
...
Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).
Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.
Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)
Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)
Vậy A = B