K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số học sinh trung bình là \(50\cdot\dfrac{3}{10}=15\left(bạn\right)\)

Số học sinh còn lại là 50-15=35(bạn)

Số học sinh giỏi là \(35\left(1-40\%\right)=21\left(bạn\right)\)

Tỉ số phần trăm giữa số học sinh giỏi và số học sinh cả lớp là 21:50=42%

28 tháng 3

Dùng phương pháp đánh giá:

P3 - 23 = q2 

Nếu q = 2 ta có

p3 - 23 = 22

p3  - 23 = 4

p3        = 4 + 23

p3       = 27

p3       = 33

p         = 3

Nếu q  > 2

⇒ q là số lẻ vì p là số nguyên tố.

P3 = 23 + q2

p3 là số chẵn (vì tổng của hai số lẻ là một số chẵn) 

⇒ p là số chẵn (vô lí vì p là số nguyên tố lớn hơn 2)

Vậy (p; q) = (3; 2) là cặp số nguyên tố duy nhất thỏa mãn đề bài.

 

600m=0,6km

Vận tốc trung bình của An là \(0.6:9=\dfrac{6}{90}=\dfrac{1}{15}\)(km/h)

27 tháng 3

bài toán hơi vô lí

 

27 tháng 3

32kg

Trọng lượng là 32*10=320(N)

(5/2-x)(3x+1)=0

=>\(\left[{}\begin{matrix}\dfrac{5}{2}-x=0\\3x+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Có 4 giao điểm 

1: \(D=3^0+3^1+...+3^{302}\)

=>\(3D=3+3^2+...+3^{303}\)

=>\(3D-D=3+3^2+...+3^{303}-3^0-3^1-...-3^{202}\)

=>\(2D=3^{303}-1\)

=>\(2D+1=3^{303}\)

=>\(27n=3^{303}\)

=>\(n=3^{300}\)

 

1)\(D=3^0+3^1+...+3^{302}\)

\(\Rightarrow3D=3\left(1+3+3^2+...+3^{302}\right)\)

\(\Rightarrow3D=3+3^2+3^3+...+3^{302}+3^{303}\)

\(\Rightarrow3D-D=\left(3+3^2+3^3+...+3^{303}\right)-\left(3^0+3^1+...+3^{302}\right)\)

\(\Rightarrow2D=3^{303}-3^0\)

\(\Rightarrow2D=3^{303}-1\)

\(\Rightarrow2D-1=3^{303}\)

\(Do3^{303}=\left(3^3\right)^{101}=27^{101}\)

\(\Rightarrow2D+1=27^{101}=27^n\)

\(\Rightarrow n=101\)

27 tháng 3

được giảm số phần trăm là :

1200000:8000000=0,15=15%

27 tháng 3

Bác An đã được giảm giá số % là : 

1,200,000 : 8,000,000 = 0,15 = 15% 

           Đ/S : .....................

27 tháng 3

Đặt A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200

Số số hạng của A:

200 - 101 + 1 = 100 (số hạng)

Ta có:

1/101 < 1/100

1/102 < 1/100

1/103 < 1/100

...

1/200 < 1/100

Cộng vế với vế, ta có:

1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200 < 1/100 + 1/100 + 1/100 + ... + 1/100

⇒ A < 100/100 = 1

Vậy A < 1

27 tháng 3

\(\dfrac{1}{101}\)+\(\)....+\(\dfrac{1}{200}\)<\(\dfrac{1}{101}\).(200-101+1)

                      =\(\dfrac{100}{101}\)<1

\(\dfrac{1}{101}\)