K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

ĐKXĐ: \(x\ne0;x\ne\dfrac{1}{3}\)

\(\dfrac{x+3}{3x^2-x}:\dfrac{2x^2+6x}{3x-1}\)

\(=\dfrac{x+3}{x\left(3x-1\right)}:\dfrac{2x\left(x+3\right)}{3x-1}\)

\(=\dfrac{x+3}{x\left(3x-1\right)}.\dfrac{3x-1}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x.2x}\)

\(=\dfrac{1}{2x^2}\)

14 tháng 12 2023

9(x + 1)² - 16(y + 3)²

= 9(x² + 2x + 1) - 16(y² + 6y + 9)

= 9x² + 18x + 9 - 16y² - 96y - 144

= 9x² - 16y² + 18x - 96y - 135

14 tháng 12 2023

\(3x^2-3y^2-12x+12y\\ =3\left(x^2-y^2\right)-12\left(x-y\right)\\ =3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\\ =3\left(x-y\right)\left(x+y-4\right)\)

3x2-3y2-12x+12y

=3(x2-y2)-12(x-y)

=3(x-y)(x+y)-4.3(x-y)

=3(x-y)(x+y-4)

13 tháng 12 2023
Đồng xu đã thay đổi như thế nào từ quá khứ
13 tháng 12 2023

a)Xét △ABI và △CBK:

AB=BC(gt)

BI=BK(gt)

\(\widehat{ABI}=\widehat{CBK}\) (đối đỉnh)

=> △ABI=△CBK (c.g.c)

=> \(\widehat{AIB}=\widehat{CKB}\)

Mà 2 góc này ở vị trí so le trong nên AI//CK

Cmtt: \(\widehat{KAB}=\widehat{ICB}\)

Mà 2 góc này ở vị trí so le trong nên AK//CI

=> AKCI là hình bình hành

Lại có góc KAI=90 độ

=> AKCI là hình chữ nhật

b) Và AKCI là hình chữ nhật nên AK//CI và AK=CI

Lại có AK=AD

Suy ra AD//CI và AD=CI

=> ADIC là hình bình hành

KI: cạnh chung

góc 

 

14 tháng 12 2023

Thay x=-1; y=0 vào A và B:

A= 3x5 -7x2y3 + 15x2y = 3.(-1)5 - 7(-1)2.03 + 15(-1)2.0= -3 - 0 + 0 = -3

B= 5x2y - 15xy2 + x5 + 8 = 5.(-1)2.0 - 15.(-1).02 + (-1)5 + 8 = 0 + 0 + (-1) + 8 = 7

b, A+B= (3x5 - 7x2y3 + 15x2y) + (5x2y - 15xy2 + x5 + 8)

A+B = (3x5 + x5) - 7x2y3 + (15x2y + 5x2y) - 15xy2 + 8

A+B= 4x5 - 7x2y3 + 20x2y - 15xy2 + 8

---

A-B= (3x5 - 7x2y3 + 15x2y) - (5x2y - 15xy2 + x5 + 8)

A-B=  (3x5 - x5) - 7x2y3 + (15x2y - 5x2y) + 15xy2 - 8

A-B= 2x- 7x2y3 + 10x2y + 15xy2 - 8

13 tháng 12 2023

a)Xét △BCM: \(\left\{{}\begin{matrix}CI\perp MB\\BK\perp MC\\CI\cap BK=E\end{matrix}\right.\)

Suy ra E là trực tâm của △BCM

\(\Rightarrow ME\perp BC\)

b) Theo kết quả của câu a: \(ME\perp BC\)

Mà \(AB\perp BC\) (Vì ABCD là hình chữ nhật)

=> ME//AB

Lại có M là trung điểm AK

=> E là trung điểm BK

=> ME là đường trung bình của △AKB

\(\Rightarrow\left\{{}\begin{matrix}ME//AB\\ME=\dfrac{1}{2}AB\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ME//NC\\ME=NC\end{matrix}\right.\)

=> MNCE là hình bình hành

=> Đpcm