tìm gtln 3x-4x^2- 1/4x+2014 giup mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 góc đáy ABC = ACB = (180 - 108) : 2 = 36 ( gt)
Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.
Trong \(\Delta\) vuông AHC có: HC/AC =cos36o
=>2HC/AC=cos36o
<=> BC/AC = 2cos36o
Gọi số thứ nhất là x
=> Số thứ 2 là 20/9 x
Thương của số thứ nhất và 3 là 1/3 x
Thương của số thứ 2 và 4 là 5/9x
Theo bài ra ta có PT:
1/3 x + 4= 5/9 x
<=> −2/9−29 x = -4
<=> x = 18
Số thứ 2 là:
18. 20/9 = 40
Vậy số thứ 1 là 18, số thứ 2 là 40
#Châu's ngốc
Một chiếc xe tải đi từ điểm A đến điểm B, quãng đường dài 172 km. Sau khi xe tải xuất phát được 1 giờ, một chiếc xe khách bắt đầu đi từ B về A và gặp xe tải sau khi đã đi được 1 giờ 36 phút. Tính vận tốc mỗi xe biết rằng mỗi giờ xe khách đi nhanh hơn xe tải 13 km.
Theo tính chất của \(\Delta\) vuông ta có:\(AH^2=BH.HC\)
Theo tính chất phân giác ta có: \(\frac{AD}{DC}=\frac{AH}{HC}\)
\(\Leftrightarrow\frac{AD^2}{DC^2}=\frac{AH^2}{HC^2}=\frac{HB.HC}{HC^2}=\frac{HB}{HC}\left(đpcm\right)\)
Ta có: \(A=1-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{1}{x^2y^2}\)
\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)
\(=1-\frac{1}{x^2y^2}+\frac{2}{xy}+\frac{1}{x^2y^2}\)
\(=1+\frac{2}{xy}\)
Mà: \(x,y>0;x+y=1\)
Áp dụng BĐT Cosi ta có:
\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Lúc đó: \(A=1+\frac{2}{xy}\ge1+\frac{2}{\frac{1}{4}}=9\)
Vậy \(Min_A=9\Leftrightarrow x=y=\frac{1}{2}\)
Tặng lì xì năm ms nè nhưng thôi tớ giải đc rồi dù sao cảm ơn cậu :))) @huyền
Cách khác:V theo cách của cô tớ hơi lạ =_=:)))
Ta có x + y = 1 => \(\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\Rightarrow\) tương đương vs biểu thức sau :
\(\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}\)
\(=\frac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)=xy+x+y+1}{xy}=1+\frac{2}{xy}\)
Mà 1 = x + y và x + y > 2 Vxy => (x + y) 2 > 4xy do đó 1 = (x+y)2> 4xy
\(\frac{\Rightarrow1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\Rightarrow\frac{2}{xy}\ge8\Rightarrow\)
MinA = 9 khi x=y=1/2
Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:
(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)
.
Đặt \(x^2+x=t\)
Khi đó phương trình tương đương với:
\(t-\frac{4}{t}=3\)
\(\Rightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left(t^2-1\right)-\left(3t+3\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-3\left(t+1\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\)
\(\Rightarrow t=-1;t=4\)
Thay vào làm nốt
\(3x-4x^2-\frac{1}{4}x+2014\)
\(=-\left[\left(2x\right)^2-4x+1+x+\frac{1}{4}x-2015\right]\)
\(=\left[\left(2x-1\right)^2-\left(2x-1\right)\frac{2}{4}x+1-2015\right]\)
Vậy Max của biểu thức trên là 2014 khi x = 1/2
x ở dưới mẫu cở