Chứng tỏ: A chia hết cho 13
A=3+3^2+3^3+...+3^99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x` thuộc `Ư(14) =` {`-14;-7;-2;-1;1;2;7;14`}
Mà `2 ≤ x ≤ 8`
`=> x` thuộc {`2;7;14`}
Vậy ` x` thuộc {`2;7;14`}
`2+4+6+...+300`
`(300+2) . [(300-2):2+1] : 2`
`= 302 . (298 : 2 + 1) : 2`
`= 302 . (149 + 1) : 2`
`= 302 . 150 : 2`
`= 22650``
Số số hạng là \(\dfrac{300-2}{2}+1=\dfrac{298}{2}+1=150\left(số\right)\)
Tổng của dãy số là (300+2)x150:2=302x75=22650
\(\dfrac{2}{3}+\dfrac{7}{4}:x=\dfrac{5}{6}\\ \Rightarrow\dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{2}{3}\\\Rightarrow\dfrac{7}{4}:x=\dfrac{1}{6} \\ \Rightarrow x=\dfrac{7}{4}:\dfrac{1}{6}\\ \Rightarrow x=\dfrac{21}{2}\)
Vậy \(x=\dfrac{21}{2}\)
\(\dfrac{2}{3}+\dfrac{7}{4}:x=\dfrac{5}{6}\)
=> \(\dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{2}{3}\)
=> \(\dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{4}{6}\)
=> \(\dfrac{7}{4}:x=\dfrac{1}{6}\)
=> \(x=\dfrac{7}{4}:\dfrac{1}{6}\)
=> x = \(\dfrac{7}{4}.6\)
=> \(x=\dfrac{21}{2}\)
Vậy ...
\(\dfrac{1}{4}\cdot\dfrac{1}{4}\cdot\dfrac{3}{4}-2\dfrac{1}{4}:1,\left(3\right)\)
\(=\dfrac{3}{64}-\dfrac{9}{4}:\dfrac{4}{3}\)
\(=\dfrac{3}{64}-\dfrac{27}{16}=\dfrac{3}{64}-\dfrac{108}{64}=-\dfrac{105}{64}\)
\(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(1.5+\dfrac{-3}{5}:x\right)=0\left(x\ne0\right)\\ TH1:\dfrac{3}{4}x-\dfrac{9}{16}=0\\ =>\dfrac{3}{4}x=\dfrac{9}{16}\\ =>x=\dfrac{9}{16}:\dfrac{3}{4}=\dfrac{3}{4}\left(tm\right)\\ TH2:1,5+\dfrac{-3}{5}:x=0\\ =>\dfrac{3}{5}:x=\dfrac{3}{2}\\ =>x=\dfrac{3}{5}:\dfrac{3}{2}=\dfrac{2}{5}\left(tm\right)\)
\(\left(x+\dfrac{5}{3}\right)\left(x-\dfrac{5}{4}\right)=0\)
<=> \(\left[{}\begin{matrix}x+\dfrac{5}{3}=0\\x-\dfrac{5}{4}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{5}{4}\end{matrix}\right.\)
\(\left(x+\dfrac{5}{3}\right)\left(x-\dfrac{5}{4}\right)=0\\ TH1:x+\dfrac{5}{3}=0\\ =>x=\dfrac{-5}{3}\\ TH2:x-\dfrac{5}{4}=0\\ =>x=\dfrac{5}{4}\)
Vậy: ...
\(-\dfrac{2}{5}+\dfrac{5}{6}x=-\dfrac{4}{15}\)
=>\(\dfrac{5}{6}x=-\dfrac{4}{15}+\dfrac{2}{5}=\dfrac{2}{15}\)
=>\(x=\dfrac{2}{15}:\dfrac{5}{6}=\dfrac{2}{15}\cdot\dfrac{6}{5}=\dfrac{12}{75}=\dfrac{4}{25}\)
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
`A =` \(\left(3+3^2+3^3\right).\left(1+3^3+...+3^{96}\right)\)
`A =` \(39.\left(1+3^3+...+3^{96}\right)\)
Mà `39 ⋮ 13`
`=> A ⋮ 13` (đpcm)