K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
18 tháng 2

bàu 1 : gọi v2 (km/h) là vận tốc của xe thứ hai (đk: v1 > v2 > 0)
vận tốc xe 1 sẽ là v1 = v2 + 10 (km/h)

thời gian xe 1 đi từ A -> B: \(t_1=\dfrac{200}{v_1}=\dfrac{200}{v_2+10}\left(h\right)\)

thời gian xe 2 đi từ A -> B: \(t_2=\dfrac{200}{v_2}\left(h\right)\)

theo đề bài, xe thứ nhất đến sớm hơn 1 giờ  nên:

\(t_2-t_1=1\Leftrightarrow\dfrac{200}{v_2}-\dfrac{200}{v_2+10}=1\\ =>200\left(v_2+10\right)-200v_2=v_2\left(v_2+10\right)\\ =>200v_2+2000-200v_2=v_2^2+10v_2\\ =>2000=v_2^2+10v_2\\ =>v_2^2+10v_2-2000=0\\ =>\left[{}\begin{matrix}v_2=40\left(km.h\right)\left(TM\right)\\v_2=-50\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)

\(v_1=v_2+10=40+10=50\left(km.h\right)\)

vậy vận tốc xe 1 là 50km/h; vận tốc xe 2 là 40km/h

S
18 tháng 2

bài 2: gọi \(t_d\text{ là thời gian dự tính; }t_t\text{ là thời gian thực tế}\) 

thời gian người đó dự định đi hết quãng đường là: 

\(t_d=\dfrac{90}{v}\left(h\right)\)

1/2 quãng đường là: \(90\cdot\dfrac{1}{2}=45\left(km\right)\)

quãng đường đầu tiên người đó đi: \(t_1=\dfrac{45}{v}\left(h\right)\)

quãng đường còn lại người đó đi: \(t_2=\dfrac{45}{v-10}\left(h\right)\)

thời gian thực tế người đó đi là: \(t_t=\dfrac{45}{v}+\dfrac{45}{v-10}\left(h\right)\)

mà \(t_t=t_d+\dfrac{18}{60}\)

\(=>\dfrac{45}{v}+\dfrac{45}{v-10}=\dfrac{90}{v}+0,3\\ =>\dfrac{45}{v-10}-\dfrac{45}{v}=0,3\\ 45v-45\left(v-10\right)=0,3v\left(v-10\right)\\ 45v-45v+450=0,3v^2-3v\\ =>0,3v^2-3v-450=0\\ < =>v^2-10v-1500=0\\ =>\left[{}\begin{matrix}v\approx44\left(km.h\right)\left(TM\right)\\v\approx-34\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)

thời gian thực tế người đó đi là: 

\(t_t=\dfrac{45}{44}+\dfrac{45}{44-10}\approx2,34\left(h\right)=2h20p\)

vậy vận tốc dự đinh là 44km/hl thời gian đi là 2h20p

Gọi vận tốc của cano lúc nước yên lặng là x(km/h)

(Điều kiện: x>4)

vận tốc lúc xuôi dòng là x+4(km/h)

Vận tốc lúc ngược dòng là x-4(km/h)

Thời gian đi xuôi dòng là \(\dfrac{30}{x+4}\left(giờ\right)\)

Thời gian đi ngược dòng là \(\dfrac{30}{x-4}\left(giờ\right)\)

Tổng thời gian cả đi lẫn về là 4 giờ nên ta có:

\(\dfrac{30}{x+4}+\dfrac{30}{x-4}=4\)

=>\(\dfrac{30\left(x-4\right)+30\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=4\)

=>\(4\left(x^2-16\right)=60x\)

=>\(x^2-16=15x\)

=>\(x^2-15x-16=0\)

=>(x-16)(x+1)=0

=>\(\left[{}\begin{matrix}x-16=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Vận tốc của cano lúc nước yên lặng là 16km/h

a: Khi x=16 thì \(B=\dfrac{4+3}{4-3}=\dfrac{7}{1}=7\)

b: \(A=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}+6-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{1}{\sqrt{x}-3}\)

 

Bài 15. Cho tam giác nhọn ABC. Vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại F và E. Gọi H là giao điểm của BE và CF; AH cắt BC tại D. Chứng minh: a) BE vuông góc với AC. b) Tia DA là phân giác của góc EDF. Bài 16. Từ điểm M nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi I là giao điểm của MO và AB. a) Chứng minh MO 1 AB và IA =...
Đọc tiếp

Bài 15. Cho tam giác nhọn ABC. Vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại F và E. Gọi H là giao điểm của BE và CF; AH cắt BC tại D. Chứng minh: a) BE vuông góc với AC. b) Tia DA là phân giác của góc EDF. Bài 16. Từ điểm M nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi I là giao điểm của MO và AB. a) Chứng minh MO 1 AB và IA = IB. b) Vẽ đường kính BC của (O), MC cắt (O) tại điểm thứ hai là D. Gọi H là trung điểm của CD và K là giao điểm của MC và AB. Chứng minh MC.MD = MH.MK Bài 17. Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC Kẻ đường kính BD. a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn và CD // AO b) AD cắt (O) tại điểm E khác D. Chứng minh: AB² = AE.AD và góc AHE = ADO. c) Giả sử OA = 2R, tính diện tích hình quạt giới hạn bởi bán kính OB, OC và cung lớn BC

2

Bài 17:

a:

Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên OBAC là tứ giác nội tiếp

=>O,B,A,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD
mà OA\(\perp\)BC

nên OA//CD

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)AD tại E

Xét ΔABD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(3\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3),(4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

Bài 15:

a:

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

b: 

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>CF\(\perp\)AB tại F

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(CEHD nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DA là phân giác của góc FDE

12 tháng 2

help me


11 tháng 2

`69^2022`

`= (...9)^2022`

Có cùng chữ số tận cùng với `9^2022`

Ta có: `9^2022 = 9^(1011.2) = (9^2)^1011 = 81^1011` có tận cùng chữ số 1

Vậy ....

11 tháng 2

\(15^{15^{15^{15}}}\) có tận cùng là chữ số 5 do các chữ số tận cùng là 5 mũ bao nhiêu cũng tận cùng là 5 ngoại từ mũ 0

Để 4 n + 3 3 n + 1 3n+1 4n+3 thuộc Z thì 4n + 3 chia hết cho 3n + 1

⇒ 3 ( 4 n + 3 ) ⋮ 3 n + 1 ⇒3(4n+3)⋮3n+1 ⇒ 12 n + 9 ⋮ 3 n + 1

⇒12n+9⋮3n+1 ⇒ ( 12 n + 4 ) + 5 ⋮ 3 n + 1

⇒(12n+4)+5⋮3n+1

⇒ 4 ( 3 n + 1 ) + 5 ⋮ 3 n + 1

⇒4(3n+1)+5⋮3n+1

⇒ 5 ⋮ 3 n + 1 ⇒5⋮3n+1

⇒ 3 n + 1 ∈ { ± 1 ; ± 5 }

⇒3n+1∈{±1;±5} +) 3n + 1 = 1

⇒ n = 0

⇒n=0 ( chọn ) +) 3 n + 1 = − 1

⇒ n = − 2 3 3n+1=−1

⇒n= 3 −2 ( loại ) +) 3 n + 1 = 5

⇒ n = 4 3 3n+1=5

⇒n= 3 4 ( loại ) +) 3 n + 1 = − 5

⇒ n = − 2 3n+1=−5

⇒n=−2 Vậy n = 0 hoặc n = -2

A= 2n−1 6n−2 = 2n−1 3(2n−1)+1 =3+ 2n−1 1

⇒ 2 n − 1 ∈ Ư ( 1 ) = { ± 1 }

⇒2n−1∈Ư(1)={±1} 2n-1 1 -1 n 1 loại

Để phương trình là phương trình bậc hai thì \(\sqrt{m}>=0\)

=>m>=0

Để phương trình có hai nghiệm phân biệt thì \(\left[-2\left(\sqrt{m}+1\right)\right]^2-4\left(\sqrt{m}+1\right)>0\)

=>\(4\left(m+2\sqrt{m}+1\right)-4\left(\sqrt{m}+1\right)>0\)

=>\(4\left(m+\sqrt{m}\right)>0\)(luôn đúng khi m>=0)

10 tháng 2

Điều kiện: `m >= 0`

Phương trình đã cho có 2 nghiệm phân biệt 

`<=> Δ' > 0`

`<=> (sqrt{m} + 1)^2 - (sqrt{m} + 1).1 > 0`

`<=> m^2 + 2sqrt{m} + 1 - sqrt{m} - 1 > 0`

`<=> m^2 + sqrt{m} >= 0` (Thỏa mãn với mọi `m >= 0)`

9 tháng 2

Olm chào em, em cần đăng đầy đủ nội dung câu hỏi đó lên trên n này thì thầy cô mới có thể giải thích cho em tại sao lại có dòng:

- 4 x 1 x 2 em nhé.