cho hình vuông có cạnh bằng 32, cho 33 điểm bất kỳ. CMR : trong các điểm đã ch, có thể tìm được 3 điểm lập thành tam giác có diện tích lón hơn 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\left(a+b+c\right)^2=a^2+2ab+b^2+2bc+c^2+2ac\)
\(\Rightarrow2\left(ab+bc+ac\right)=\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)=3^2-7=9-7=2\)
\(\Rightarrow ab+bc+ac=\frac{2}{2}=1\)
Lại có : \(a^3+b^3+c^3=a^3+b^3+c^3-3abc+3abc=15\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc=15\)
\(\Rightarrow3\cdot\left[\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\right]+3abc=15\)
\(\Rightarrow3\cdot\left(7-1\right)+3abc=15\Rightarrow3\cdot6+3abc=15\Rightarrow18+3abc=15\)
\(\Rightarrow3abc=15-18=-3\Rightarrow abc=-1\)
Mà : \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Đồng thời : \(a^2b^2+b^2c^2+a^2c^2=\left(ab+bc+ca\right)^2-2ab^2c-2bc^2a-2ca^2b\)
\(=1^2-2abc\left(a+b+c\right)=1-2\cdot\left(-1\right)\cdot3=1+6=7\)
\(\Rightarrow a^4+b^4+c^4=\left(7\right)^2-2\cdot7=49-14=35\)
Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}-\frac{7x}{5}+\frac{x-3}{10}+x-1=0\)
\(\Leftrightarrow\frac{20x-2\left(4-3x\right)-210x+15\left(x-3\right)+150x-150}{150}=0\)
\(\Leftrightarrow20x-8+6x-210x+15x-45+150x-150=0\)
\(\Leftrightarrow-19x-203=0\)
\(\Leftrightarrow x=-\frac{203}{19}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{203}{19}\right\}\)
\(\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{\frac{4-13x}{5}}{15}=\frac{7x}{5}-\frac{\frac{x-3}{2}}{5}-x+15\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{2x}{5}-\frac{x-3}{10}+1\)
\(\Leftrightarrow20x-2\left(4-3x\right)=60x-15\left(x-3\right)+150\)
\(\Leftrightarrow20x-8+6x=60x-15x+45+150\)
\(\Leftrightarrow26x-8=49x+195\)
\(\Leftrightarrow-8=45x+195-26x\)
\(\Leftrightarrow-8=19x+195\)
\(\Leftrightarrow-8-195=19x\)
\(\Leftrightarrow-203=19x\)
\(\Leftrightarrow x=-\frac{203}{19}\)
vậy: tập nghiệm của phương trình là: \(S=\left\{-\frac{203}{19}\right\}\)
a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)
<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)
<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)
Phương trình trên bạn tự bấm máy tính nha
<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
Đến đây tự làm đc rồi
Vậy x=1 hoặc -2 hoặc -3
b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)
<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x-2\right)^2=0\)
<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c)Câu c mik chưa làm đc
Đáp án câu C:
\(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)
\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)
\(=\left(x-2\right)^2+1\)
\(Mà\left(x-2\right)^2\ge0\)
\(Nên\left(x-2\right)^2+1\ge1\)
\(Khiđó:x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=0\)