K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7

c;     C = \(\dfrac{28^{28}+28^{24}+...+28^4+1}{28^{30}+28^{28}+...+28^2+1}\)

        A =         1 + 284 + 288 + 2812 + ...2828

  284A = 284 + 288 + 2812 + ... + 2828 + 2832

284A - A = 284+ 288+...+2828+ 2832- (1 + 284 + 288+...+2828)

(284 - 1)A = 284 + 288+ ...+ 2828 + 2832 - 1 - 284- ...- 2828

(284 - 1)A = (2832 - 1) + (284 - 284) + (288 - 288) + ... + (2828 - 2828)

(284 - 1)A = 2832 - 1 + 0 + 0... + 0

            A = (2832 - 1): (284 - 1)

  Đặt B = 2830 + 2828 + ... + 282 + 1

  282B = 2832 + 2830 + ... + 284 + 282

282B - B = 2832 + 2830 + ... + 284 + 282 - (2830 + 2828 +...+1)

(282 - 1)B = 2832 + 2830+...+284 + 282 - 2830 - 2828 - ... 282- 1

(282 - 1)B = (2832 - 1) + (2830 - 2830) +...+(282 - 282)

(282 - 1)B = (2832 - 1) + 0 + 0 +...+ 0

(282 - 1)B = 2832 - 1 

             B = (2832 - 1): (282 - 1)

C = \(\dfrac{A}{B}\) = \(\dfrac{28^{32}-1}{28^4-1}\) : \(\dfrac{28^{32}-1}{28^2-1}\)

C = \(\dfrac{28^{32}-1}{28^4-1}\) \(\times\) \(\dfrac{28^2-1}{28^{32}-1}\)

C = \(\dfrac{28^2-1}{28^4-1}\)

C = \(\dfrac{1}{785}\) 

 

 

 

 

 

 

 

 

8 tháng 7

                Câu d:

 \(\dfrac{x-1}{99}\) + \(\dfrac{x-2}{98}\) + \(\dfrac{x-3}{97}\) = \(\dfrac{x-4}{96}\) + \(\dfrac{x-5}{95}\) + \(\dfrac{x-6}{94}\)

(\(\dfrac{x-1}{99}\)-1)+(\(\dfrac{x-2}{98}\)-1)+(\(\dfrac{x-3}{97}\)-1) = (\(\dfrac{x-4}{96}\)-1) + (\(\dfrac{x-5}{95}\)-1)+(\(\dfrac{x-6}{94}\)-1)

\(\dfrac{x-100}{99}\)+\(\dfrac{x-100}{98}\)+\(\dfrac{x-100}{97}\) = \(\dfrac{x-100}{96}\)+\(\dfrac{x-100}{95}\)+\(\dfrac{x-100}{94}\)

\(\dfrac{x-100}{99}\)+\(\dfrac{x-100}{98}\)+\(\dfrac{x-100}{97}\)\(\dfrac{x-100}{96}\)-\(\dfrac{x-100}{95}\)-\(\dfrac{x-100}{94}\) = 0

(\(x-100\)).(\(\dfrac{1}{99}\)+\(\dfrac{1}{98}\)+\(\dfrac{1}{97}\) - \(\dfrac{1}{96}\)-\(\dfrac{1}{95}\)-\(\dfrac{1}{94}\)) = 0

\(\dfrac{1}{98}< \dfrac{1}{98}< \dfrac{1}{97}< \dfrac{1}{96}< \dfrac{1}{95}< \dfrac{1}{94}\)

Nên (\(\dfrac{1}{99}\) + \(\dfrac{1}{98}\) + \(\dfrac{1}{97}\) )- (\(\dfrac{1}{96}\) + \(\dfrac{1}{95}\) +\(\dfrac{1}{94}\) )< 0 

\(x-100\) = 0

Vậy \(x\) = 100

 

 

\(x\left(2x-3\right)-2\left(3-x^2\right)+1=0\)

=>\(2x^2-3x-6+2x^2+1=0\)

=>\(4x^2-3x-5=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot4\cdot\left(-5\right)=9+80=89>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x=\dfrac{3-\sqrt{89}}{2\cdot4}=\dfrac{3-\sqrt{89}}{8}\\x=\dfrac{3+\sqrt{89}}{2\cdot4}=\dfrac{3+\sqrt{89}}{8}\end{matrix}\right.\)

8 tháng 7

a) \(\lim\limits_{ }\left(\sqrt{n^2-n+1}-n\right)\)

\(=\lim\limits_{ }\left[\dfrac{\left(\sqrt{n^2-n+1}-n\right)\left(\sqrt{n^2-n+1}+n\right)}{\sqrt{n^2-n+1}+n}\right]\)

\(=\lim\limits_{ }\left(\dfrac{1-n}{\sqrt{n^2-n+1}+n}\right)\)

\(=\lim\limits_{ }\left(\dfrac{\dfrac{1}{n}-1}{\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)\)

\(=-\dfrac{1}{2}\)

b) \(\lim\limits_{ }\left(\dfrac{-3}{4n^2-2n+1}\right)=0\)

c) \(\lim\limits_{ }\dfrac{n^2+n+5}{2n+1}=+\infty\)

d) \(\lim\limits_{ }\left(\sqrt{n^2-1}-\sqrt{3n^2+2}\right)\)

\(=\lim\limits_{ }\left(\dfrac{-2n^2-3}{\sqrt{n^2-1}+\sqrt{3n^2+2}}\right)\)

\(\lim\limits_{ }\left(\dfrac{-2n-\dfrac{3}{n}}{\sqrt{1-\dfrac{1}{n^2}}+\sqrt{3+\dfrac{2}{n^2}}}\right)\)

\(=-\infty\)

a: \(lim\left(\sqrt{n^2-n+1}-n\right)\)

\(=\lim\limits\dfrac{n^2-n+1-n^2}{\sqrt{n^2-n+1}+n}=\lim\limits\dfrac{-n+1}{\sqrt{n^2-n+1}+n}\)

\(=\lim\limits\dfrac{-1+\dfrac{1}{n}}{\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{-1+0}{\sqrt{1-0+0}+1}=\dfrac{-1}{2}\)

b: \(\lim\limits\dfrac{-3}{4n^2-2n+1}\)

\(=\lim\limits\dfrac{-\dfrac{3}{n^2}}{4-\dfrac{2}{n}+\dfrac{1}{n^2}}=\dfrac{0}{4-0+0}=0\)

c: \(\lim\limits\dfrac{n^2+n+5}{2n+1}=\lim\limits\dfrac{n^2\left(1+\dfrac{1}{n}+\dfrac{5}{n^2}\right)}{n\left(2+\dfrac{1}{n}\right)}\)

\(=\lim\limits\dfrac{n\left(1+\dfrac{1}{n}+\dfrac{5}{n^2}\right)}{2+\dfrac{1}{n}}=+\infty\)

d: \(\lim\limits\left(\sqrt{n^2-1}-\sqrt{3n^2+2}\right)\)

\(=\lim\limits\left(\dfrac{n^2-1-3n^2-2}{\sqrt{n^2-1}+\sqrt{3n^2+2}}\right)=\lim\limits\left(\dfrac{-2n^2-3}{\sqrt{n^2-1}+\sqrt{3n^2+2}}\right)\)

\(=\lim\limits\left(\dfrac{n^2\left(-2-\dfrac{3}{n^2}\right)}{n\cdot\left(\sqrt{1-\dfrac{1}{n^2}}+\sqrt{3+\dfrac{2}{n^2}}\right)}\right)\)

\(=\lim\limits\left(\dfrac{n\left(-2-\dfrac{3}{n^2}\right)}{\sqrt{1-\dfrac{1}{n^2}}+\sqrt{3+\dfrac{2}{n^2}}}\right)=+\infty\)

7 tháng 7

Bài 4:

\(a)2,6^2+4\cdot1,3\cdot7,4+7,4^2\\ =2,6^2+2\cdot\left(2\cdot1,3\right)+7,4^2\\ =2,6^2+2\cdot2,6\cdot7,4+7,4^2\\ =\left(2,6+7,4\right)^2\\ =10^2\\ =100\\ b)2024^2-2023^2\\ =\left(2024-2023\right)\left(2024+2023\right)\\ =1\cdot4047\\ =4047\)

Bài 5:

\(a)4x^2+24x+36\\ =\left(2x\right)^2+2\cdot2x\cdot6+6^2\\ =\left(2x+6\right)^2\\ b)9x^4y^2+18x^2y+9\\ =\left(3x^2y\right)^2+2\cdot3x^2y\cdot3+3^2\\ =\left(3x^2y+3\right)^2\)

7 tháng 7

giải giúp mình bài 5 với các bạn

a: Ta có: \(\widehat{xBy}=\widehat{xAz}\)(hai góc đồng vị)

mà hai góc này là hai góc ở vị trí đồng vị

nên By//Az

b: AC là phân giác của góc xAz

=>\(\widehat{xAC}=\widehat{zAC}=\dfrac{\widehat{xAz}}{2}=30^0\)

=>\(\widehat{BAC}=30^0\)

Ta có: \(\widehat{CBA}+\widehat{CBx}=180^0\)(hai góc kề bù)

=>\(\widehat{CBA}+60^0=180^0\)

=>\(\widehat{CBA}=120^0\)

Xét ΔBAC có \(\widehat{BAC}+\widehat{CBA}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+30^0+120^0=180^0\)

=>\(\widehat{ACB}=30^0\)

c: BD là phân giác của góc yBA

=>\(\widehat{ABD}=\dfrac{\widehat{yBA}}{2}=60^0\)

Xét ΔBDA có \(\widehat{DBA}+\widehat{DAB}=30^0+60^0=90^0\)

nên ΔBDA vuông tại D

=>AC\(\perp\)BD tại D

7 tháng 7

1) Đặt: \(\dfrac{1}{x}=u;\dfrac{1}{y-2}=v\)

\(=>\left\{{}\begin{matrix}2u+3v=4\\4u-v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4u+6v=8\\4u-v=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7v=7\\4u-v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v=1\\u=\dfrac{1}{2}\end{matrix}\right.\) 

\(=>\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\\\dfrac{1}{y-2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\) 

2) Đặt: \(\dfrac{1}{x+1}=u;\dfrac{1}{y}=v\) 

\(=>\left\{{}\begin{matrix}2u+3v=-1\\2u+5v=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u+3v=-1\\2v=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2u=-1\\v=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=-\dfrac{1}{2}\\v=0\end{matrix}\right.\\ =>\left\{{}\begin{matrix}\dfrac{1}{x+1}=-\dfrac{1}{2}\\\dfrac{1}{y}=0\end{matrix}\right.=>x,y\in\varnothing\) 

3) Đặt: \(\dfrac{1}{x}=u;\dfrac{1}{y-2}=v\) 

\(=>\left\{{}\begin{matrix}u-v=-1\\4u+3v=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4u-4v=-4\\4u+3v=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}v=\dfrac{9}{7}\\u=\dfrac{2}{7}\end{matrix}\right.\\ =>\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y-2}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y-2=\dfrac{7}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}+2=\dfrac{11}{2}\end{matrix}\right.\)

7 tháng 7

Bài 5:

\(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\\ 3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\\ 3A+A=\left(3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\right)+\left(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\right)\\ 4A=3^{101}+1\\ A=\dfrac{3^{101}+1}{4}\) 

7 tháng 7

Bài 13:

Chu vi của hình tam giác đó là: 

\(6,8+10,5+7,9=25,2\left(cm\right)\)

ĐS: ...

Bài 14:

Chiều dài của sân là:

\(86,7+21,6=108,3\left(m\right)\)

Chu vi của sân là: 

\(2\times\left(86,7+108,3\right)=390\left(m\right)\)

ĐS: ...