K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Bạn lập bản xét dấu rồi giải

26 tháng 12 2019

1) ta có: \(x^2\le\left|1-\frac{2}{x^2}\right|\)                            ( *)

+ nếu \(x^2\ge2\)

từ (*) \(\Rightarrow x^2\le1-\frac{2}{x^2}\)

\(\Leftrightarrow x^2-1+\frac{2}{x^2}\le0\)

\(\Rightarrow x^4-x^2+2\le0\)         (vì \(x^2\ge0\))

\(\Leftrightarrow\left(x^2-\frac{1}{4}\right)^2+\frac{7}{4}\le0\)  ( vô lý )

+ nếu \(x^2\le2\)

tứ (*) \(\Rightarrow x^2\le\frac{2}{x^2}-1\)

\(\Leftrightarrow x^2-\frac{2}{x^2}+1\le0\)

\(\Rightarrow x^4-2+x^2\le0\)        (vì \(x^2\ge0\))

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+2\right)\le0\)

\(\Leftrightarrow x^2-1\le0\)      ( vì \(x^2+2\)> 0 )

\(\Leftrightarrow x^2\le1\)

\(\Leftrightarrow-1\le x\le1\)

Vậy: \(-1\le x\le1\)

26 tháng 12 2019

Ta có : \(\frac{\left|x^2-4x\right|+3}{x^2+\left|x-5\right|}\ge1\)

\(\Leftrightarrow\left|x^2-4x\right|+3\ge x^2+\left|x-5\right|\)

\(\Leftrightarrow\left|x^2-4x\right|+3-x^2-\left|x-5\right|\ge0\)   (1)

+ nếu x= 0. từ pt (1) => 3 \(\ge\)0 ( đúng )

+ nếu x < 4 và x \(\ne\)0.

từ pt (1) => 4x - x2  + 3 - x2 - ( 5 - x ) \(\ge\)0

\(\Leftrightarrow-2x^2+5x-2\ge0\)

\(\Leftrightarrow2x^2-5x+2\le0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\le0\)

\(\orbr{\begin{cases}\hept{\begin{cases}x-2\ge0\\2x-1\le0\end{cases}}\\\hept{\begin{cases}x-2\le0\\2x-1\ge0\end{cases}}\end{cases}}\)   TH 1: 

\(\hept{\begin{cases}x-2\ge0\\2x-1\le0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{1}{2}\end{cases}}\)( vô lý ) 

    TH 2:

\(\hept{\begin{cases}x-2\le0\\2x-1\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{1}{2}\end{cases}}\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le2\)  ( thỏa mãn x< 4 )

+ nếu \(4\le x< 5\)

từ pt (1) => x2 - 4x + 3 - x- ( 5 - x ) \(\ge0\)

\(\Leftrightarrow-3x-2\ge0\)

\(\Leftrightarrow3x+2\le0\)

\(\Leftrightarrow x\le-\frac{2}{3}\)( không thỏa man \(4\le x< 5\))

+ nếu \(x\ge5\)

từ pt (1) => x2 - 4x + 3 - x2 - ( x -5 ) \(\ge\)0

\(\Leftrightarrow-5x+8\ge0\)

\(\Leftrightarrow5x\le8\)
\(\Leftrightarrow x\le\frac{8}{5}\)  ( không thỏa mãn \(x\ge5\))

vậy: bpt có nghiệm là \(\frac{1}{2}\le x\le2\)

25 tháng 12 2019

Với m = 0 phương trình có dạng: -2x = 0 <=> x = 0    => m = 0 không t/m yêu cầu bài toán.

Với m <> 0 , ta có:  Denta = - 8 m + 4

Phương trình có 2 nghiệm 

<=> Denta = - 8 m + 4 >= 0 

<=> m <= \(\frac{1}{2}\)

Vậy ...