phân tích đa thức thành nhân tử
a,\(x^5+x+1\)
b,\(x^3+x^2+4\)
c\(x^4+2x^2-24\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: x2 < 9 (x \(\inℕ\))
=> x2 < 32
=> x < 3
=> x = {0; 1; 2}
b) Để \(\frac{2}{3\left|x-1\right|+4}\)đạt GTLN
=> 3|x - 1|+ 4 đạt giá trị nhỏ nhất
mà 3|x - 1| \(\ge0\forall x\)
=> 3|x - 1| + 4 \(\ge\)4
Dấu "=" xảy ra <=> x - 1 = 0
=> x = 1
Vậy GTLN của \(B=\frac{1}{2}\Leftrightarrow x=1\)
\(2\widehat{A_2}=3\widehat{B_2}\Rightarrow\widehat{A_2}=\frac{3}{2}\widehat{B_2}\)
Vì a // b nên:
\(\widehat{A_2}+\widehat{B_2}=180^0\)
\(\Rightarrow\frac{3}{2}\widehat{B_2}+\widehat{B_2}=180^0\)
\(\Rightarrow\frac{5}{2}\widehat{B_2}=180^0\)
\(\Rightarrow\widehat{B_2}=72^0\)
\(\Rightarrow\widehat{A_2}=72^0\times\frac{3}{2}=108^0\)
Vậy...
a) Vì vai trò của x, y, z như nhau nên ko mất tính tổng quát, giả sử x≤y≤zx≤y≤z
⇒⇒ 3z ≥≥ xyz
⇒⇒ 3 ≥≥ xy
Vì xy nguyên dương nên xy = 1 hoặc xy = 2
+ Nếu xy = 1 thì x + y + z = z ⇒⇒ x + y = 0, loại vì x, y nguyên dương
+ Nếu xy = 2 thì x + y + z = 2z ⇒⇒ x + y = z. Do xy = 2 và x ≤≤ y nên x = 1, y = 2, do đó y = 3.
Vậy...
b, xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
chúc bạn hok tốt
a) Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)
Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)
=> \(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)
+) Trường hợp 1 :
z = 1 thì xy = 4(x + y + 1) <=> (x - 4)(y - 4) = 20
Nên x - 4 và y - 4 là ước của 20 với \(x-4\ge y-4\ge-3\)(do \(x\ge y\ge z=1\))
x - 4 | 20 | 10 | 5 | 4 | 2 | 1 |
y - 4 | 1 | 2 | 4 | 5 | 10 | 20 |
x | 24 | 14 | 9 | 8 | 6 | 5 |
y | 5 | 6 | 8 | 9 | 14 | 24 |
Vậy ta được cặp (x;y) là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)
Xét tiếp trường hợp z = 2,z = 3 nữa nhé
b) Tương tự
Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)
\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)
Mặt khác áp dụng BĐT Cauchy Schwarz:
\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)
Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3
a) \(\frac{x-2}{3x+2}=0\Rightarrow x-2=0\Rightarrow x=2\)
b) \(\frac{x+8}{x+9}>0\)
TH1 : \(\hept{\begin{cases}x+8< 0\\x+9< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -8\\x< -9\end{cases}}\Rightarrow x< -9}\)
TH2 : \(\hept{\begin{cases}x+8>0\\x+9>0\end{cases}\Rightarrow\hept{\begin{cases}x>-8\\x>-9\end{cases}\Rightarrow}x>-8}\)
Vậy khi x < -9 hoặc x > - 8 thì \(\frac{x+8}{x+9}>0\)
c) \(\frac{x-2}{x-6}< 0\)
TH1 : \(\hept{\begin{cases}x-2< 0\\x-6>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x>6\end{cases}}\Rightarrow x\in\varnothing\)
TH2 : \(\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x< 6\end{cases}}\Rightarrow2< x< 6\)
Vậy khi 2 < x < 6 thì \(\frac{x-2}{x-6}< 0\)
a)\(\frac{x-2}{3x+2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+2=0\left(vl\right)\end{cases}}\Leftrightarrow x=2\)
vậy x=2 thì \(\frac{x-2}{3x+2}=0\)
b)\(\frac{x+8}{x+9}>0\)
=> x+8 và x+9 cùng dấu
\(th1\orbr{\begin{cases}x+8>0\\x+9>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-8\\x>-9\end{cases}}\Leftrightarrow x>-8\left(1\right)\)
\(th2\orbr{\begin{cases}x+8< 0\\x+9< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -8\\x< -9\end{cases}}\Leftrightarrow x< -9\left(2\right)\)
từ (1) và (2) =>\(-8< x< -9\)
\(\Rightarrow x=-7\)
vậy với x=-7 thì\(\frac{x+8}{x+9}>0\)
c) \(\frac{x-2}{x-6}< 0\)
=> x-2 và x-6 khác dấu
\(th1\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 6\end{cases}}}\Leftrightarrow2< x< 6\left(tm\right)\)
\(th2\hept{\begin{cases}x-2< 0\\x-6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x>6\end{cases}}}\Leftrightarrow6< x< 2\left(ktm\right)\)
từ \(2< x< 6\Rightarrow x\in\left\{3,4,5\right\}\)
vậy với \(x\in\left\{3,4,5\right\}\)thì \(\frac{x-2}{x-6}< 0\)
\(-1,52+\frac{2}{47}-x=3\)
=>\(\frac{2}{47}-x=4,52\)
=> \(x=\frac{2}{47}-4,52\)
=> \(x=\frac{4261}{1175}\)
Chúc bạn học tốt
a. \(x^5+x+1\)
\(=\left(x^5-x^2\right)+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\)\(+x^2+x+1\)
\(=\left[x^2\left(x-1\right)+1\right]\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
b.\(x^3+x^2+4\)
=\(x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+2\right)\)
c.\(x^4+2x^2-24\)
\(=x^4+2x^3-2x^3-4x^2+6x^2+12x-12x-24\)
\(=x^3\left(x+2\right)-2x^2\left(x+2\right)+6x\left(x+2\right)-12\left(x+2\right)\)
\(=\left(x^3-2x^2+6x-12\right)\left(x+2\right)\)
\(=\left[x^2\left(x-2\right)+6\left(x-2\right)\right]\left(x+2\right)\)
\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)
a, x^5 + x + 1 = x ^ 5 - x^2 + (x ^2 + x + 1) = x^2 ( x-1) ( x^2+x+1) + ( x^2+x+1) = ( x^2+x+1 ) ( x^3-x^2+1)
c, x^4 + 2x^2 -24 = (x^4 +6x^2) - ( 4x^2+24) = x^2( x^2+6) - 4(x^2+6) = (x^2-4)(x^2 +6 ) = (x-2)(x+2)(x^2+6)