K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2024

\(\left(-x-\dfrac{1}{2}y\right)\left(-x+\dfrac{1}{2}y\right)\\ =\left[\left(-x\right)-\dfrac{1}{2}y\right]\left[\left(-x\right)+\dfrac{1}{2}y\right]\\ =\left(-x\right)^2-\left(\dfrac{1}{2}y\right)^2\\ =x^2-\dfrac{y^2}{4}\)

a: Ta có: BA//CD

mà B\(\in AE\)

nên BE//CD

Ta có: BA=CD

BA=BE

Do đó: BE=CD

Xét tứ giác BECD có

BE//CD

BE=CD

Do đó: BECD là hình bình hành

c: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Ta có: BDCE là hình bình hành

=>BD//CE và BD=CE

Ta có:BD=CE

mà BD=2OB và CE=2CI

nên OB=CI

Xét tứ giác BOCI có

BO//CI

BO=CI

Do đó: BOCI là hình bình hành

2 tháng 8 2024

có tick,giúp ạ

1 tháng 8 2024

\(x^3-\dfrac{1}{8}\\ =x^3-\left(\dfrac{1}{2}\right)^3\\ =\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)

\(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(2x\right)^3-1+x^3+1\)

\(=8x^3+x^3=9x^3\)

\(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)

\(=x^3-y^3-x^3-y^3+2y^3\)

=0

a: \(\left(y-\dfrac{x}{y}\right)\left(y^2+x+\dfrac{x^2}{y^2}\right)\)

\(=\left(y-\dfrac{x}{y}\right)\left(y^2+y\cdot\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\)

\(=y^3-\left(\dfrac{x}{y}\right)^3=y^3-\dfrac{x^3}{y^3}=\dfrac{y^6-x^3}{y^3}\)

b: \(P=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{x}{y}+\dfrac{1}{4}\right)\)

\(=x^3+\dfrac{x^2}{y}+\dfrac{1}{4}x-\dfrac{1}{2}x^2-\dfrac{x}{2y}-\dfrac{1}{8}\)

\(x^3+\left(1+x\right)^3-\left(2x+1\right)\left(x+1\right)=0\)

=>\(\left(x+x+1\right)\left[x^2-x\left(x+1\right)+\left(x+1\right)^2\right]-\left(2x+1\right)\left(x+1\right)=0\)

=>\(\left(2x+1\right)\left(x^2-x^2-x+x^2+2x+1-x-1\right)=0\)

=>\(\left(2x+1\right)\left(x^2\right)=0\)

=>\(\left[{}\begin{matrix}x^2=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

a: ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)

\(P=\left(\dfrac{2x}{x+3}+\dfrac{x}{x-3}+\dfrac{3x^2+3}{9-x^2}\right):\left(\dfrac{2x-2}{x-3}-1\right)\)

\(=\dfrac{2x\left(x-3\right)+x\left(x+3\right)-3x^2-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x-2-x+3}{x-3}\)

\(=\dfrac{2x^2-6x+x^2+3x-3x^2-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+1}\)

\(=\dfrac{-3x-3}{x+1}\cdot\dfrac{1}{x+3}=-\dfrac{3}{x+3}\)

b: |x-2|=1

=>\(\left[{}\begin{matrix}x-2=-1\\x-2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Khi x=1 thì \(P=\dfrac{3}{1+3}=\dfrac{3}{4}\)

c: Để P nguyên thì \(-3⋮x+3\)

=>\(x+3\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{-2;-4;0;-6\right\}\)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
=>DA=DE

b: DA=DE

=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

=>F là trung điểm của AE

XétΔECA có F là trung điểm của EA

nên CF là đường trung tuyến của ΔECA

2 tháng 8 2024

Câu c, chứ câu a, b thì kiến thức lớp 7.