K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

a, \(\left|x-3,5\right|+\left|x-\frac{1}{3}\right|=0\)

\(\hept{\begin{cases}x-3,5\ge0\forall x\\x-\frac{1}{3}\ge0\forall x\end{cases}\Rightarrow\left|x-3,5\right|+\left|x-\frac{1}{3}\right|\ge0\forall x}\)

Dấu ''='' xảy ra <=> \(x-3,5=0\Leftrightarrow x=3,5\)

\(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)

b, \(\left|x\right|+x=\frac{1}{3}\Leftrightarrow\left|x\right|=\frac{1}{3}-x\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=-\frac{1}{3}+x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0\ne-\frac{1}{3}\end{cases}\Leftrightarrow}x=\frac{1}{6}}\)

c, \(\left|x-2\right|=x\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-2\ne0\\x=1\end{cases}}}\)

d, tương tự c 

9 tháng 8 2020

Sửa ý a) của bạn @akirafake 

a) \(\left|x-3,5\right|+\left|x-1,3\right|=0\)

Ta có : \(\left|x-3,5\right|+\left|x-1,3\right|=\left|-\left(x-3,5\right)\right|+\left|x-1,3\right|=\left|3,5-x\right|+\left|x-1,3\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(\left|3,5-x\right|+\left|x-1,5\right|\ge\left|3,5-x+x-1,5\right|=\left|2\right|=2\)

mà \(\left|x-3,5\right|+\left|x-1,3\right|=0\)( vô lí )

Vậy không có giá trị của x thỏa mãn 

b) \(\left|x\right|+x=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{3}-x\)

=> \(\orbr{\begin{cases}x=\frac{1}{3}-x\\x=x-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{3}\\0x=-\frac{1}{3}\end{cases}\Rightarrow}2x=\frac{1}{3}\Rightarrow x=\frac{1}{6}\)

c) \(\left|x\right|-x=\frac{3}{4}\)

=> \(\left|x\right|=\frac{3}{4}+x\)

=> \(\orbr{\begin{cases}x=\frac{3}{4}+x\\x=-x-\frac{3}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}0x=\frac{3}{4}\\2x=-\frac{3}{4}\end{cases}}\Rightarrow2x=-\frac{3}{4}\Rightarrow x=-\frac{3}{8}\)

d) \(\left|x-2\right|=x\)

=> \(\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\\2x=2\end{cases}}\Rightarrow2x=2\Rightarrow x=1\)

e) \(\left|x+2\right|=x\)

=> \(\orbr{\begin{cases}x+2=x\\x+2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=-2\\2x=-2\end{cases}}\Rightarrow2x=-2\Rightarrow x=-1\)

Thế x = -1 ta được :

\(\left|-1+2\right|=-1\)( vô lí )

=> Không có giá trị của x thỏa mãn

9 tháng 8 2020

\(ab+bc-c^2-ac+1=0\)

\(< =>b\left(a+c\right)-c\left(a+c\right)+1=0\)

\(< =>\left(b-c\right)\left(a+c\right)=-1\)

\(< =>a+b=0\)

\(< =>A=\left(a+b\right)^3=0^3=0\)

không hiểu thì hỏi mình chỉ cho

9 tháng 8 2020

Ta có ab - c2 + bc - ac + 1 = 0

=> (ab + bc) - (ac + c2) + 1 = 0

=> b(a + c) -c(a + c) + 1 = 0

=> (b - c)(a + c) = - 1 (1)

Vì a;b;c nguyên

=> \(\hept{\begin{cases}b-c\inℤ\\a+c\inℤ\end{cases}}\)

Ta có -1 = (-1).1 = 1.(-1)

Khi đó (b - c)(a + c) = 1.(-1) = (-1).1

Nếu  \(\hept{\begin{cases}b-c=1\\a+c=-1\end{cases}}\Rightarrow b-c+a+c=0\Rightarrow a+b=0\)

Nếu \(\hept{\begin{cases}b-c=-1\\a+c=1\end{cases}}\Rightarrow a+c+b-c=0\Rightarrow a+b=0\)

Vậy a + b = 0

Khi đó A = 03 = 0

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

Khử mẫu : \(12x-12+6x-6=4x+3x-7\)

\(\Leftrightarrow18x-18=7x-7\Leftrightarrow11x=11\Leftrightarrow x=1\)

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12+6x-6}{12}=\frac{4x+3x-7}{12}\)

\(\Leftrightarrow18x-18=7x-7\)

\(\Leftrightarrow18x+7x=18+7\)

\(\Leftrightarrow25x=25\)

\(\Leftrightarrow x=1\)

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)

\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)

Vì \(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)

\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\right)=0\)

\(\Leftrightarrow x=1\)

9 tháng 8 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{4}{ab}-1\)

\(\Rightarrow\frac{a+b}{ab}=\frac{4}{ab}-1\)

=> \(\frac{a+b-4}{ab}=-1\)

=> a + b - 4 = -ab

=> a + b - 4 + ab = 0

=> a(b + 1) + b + 1 - 5 = 0

=> (a + 1)(b + 1) = 5

Vì \(a;b\inℤ\Rightarrow\hept{\begin{cases}a+1\inℤ\\b+1\inℤ\end{cases}}\)

Khi đó 5 = 1.5 = (-1).(-5)

Lập bảng xét các trường hợp

a + 115-1-5
b + 151-5-1
a0(loại)4-2-6
b40(loại)-6-2

Vậy các cặp (a;b) nguyên thỏa mãn là (-6 ; -2) ; (-2 ; -6)

9 tháng 8 2020

\(\frac{1}{a}+\frac{1}{b}=\frac{4}{ab}-1\)( ĐKXĐ : \(a,b\ne0\)) ( Bạn Xyz nhớ bổ sung thêm ĐKXĐ ạ )

\(\Leftrightarrow\frac{b}{ab}+\frac{a}{ab}=\frac{4}{ab}-\frac{ab}{ab}\)

\(\Leftrightarrow\frac{b}{ab}+\frac{a}{ab}-\frac{4}{ab}+\frac{ab}{ab}=0\)

\(\Leftrightarrow\frac{b+a-4+ab}{ab}=0\)

\(\Leftrightarrow b+a-4+ab=0\)

\(\Leftrightarrow b+a-5+1+ab=0\)

\(\Leftrightarrow a\left(b+1\right)+1\left(b+1\right)=5\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=5\)

Ta có bảng sau :

a+11-15-5
b+15-51-1
a0-24-6
b4-60-2

Theo ĐKXĐ => Các cặp  ( x; y ) thỏa mãn là : ( -2 ; -6 ) ; ( -6 ; -2 )

9 tháng 8 2020

Áp dụng tính chất a2 - b2 = a2 + ab - ab - b2 = a(a + b) - b(a + b) = (a - b)(a + b)

Khi đó (502 - 492) + (482 - 472) + ... + (22 - 12)

= (50 + 49)(50 - 49) + (48 + 47)(48 - 47) + .... + (2 + 1)(2 - 1)

= 50 + 49 + 48 + 47 + ... + 2 + 1

= 50(50 + 1) : 2 = 1275