(x-2)²⁰¹²+|y²-9|²⁰¹⁴=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(=\frac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^3.5^2.\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5\)
\(=2.25+4.5\)
\(=50+20\)
\(=70\)
Bài làm
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
\(B=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\left(5^2+2\cdot5^3\right)}{2^3.5^2}\)
\(B=\frac{2^4\left[5^2\left(1+2\cdot5\right)\right]}{2^3.5^2}\)
\(B=\frac{2^4\cdot5^2\cdot11}{2^3\cdot5^2}\)
\(B=2.11=22\)
Vậy B = 22
\(\left(2x+1\right)^2=\frac{16}{25}\)
\(\Rightarrow\left(2x+1\right)^2=\left(\frac{4}{5}\right)^2\)
\(\Leftrightarrow2x+1=\frac{4}{5}\)
\(\Leftrightarrow2x=-\frac{1}{5}\)
\(\Leftrightarrow x=-\frac{1}{10}\)
Bài làm:
Ta có: \(\left[\left(2x-0,3\right)-2\right]=8\)
\(\Leftrightarrow2x-0,3=10\)
\(\Leftrightarrow2x=10,3\)
\(\Leftrightarrow x=5,15\)
\(3x^2-2x=0\)
=> \(x.\left(3x-2\right)=0\)
=> x = 0 hoặc 3x - 2 =0
x = 0 3x = 2
x = 0 x = \(\frac{2}{3}\)
vậy x = 0 hoặc x = \(\frac{2}{3}\)
\(3x^2-2x=0\)
\(\Delta'=1\)
\(x_1=\frac{1+1}{3}=\frac{2}{3}\)
\(x_2=\frac{1-1}{3}=0\)
\(\frac{x-1}{x+2}=\frac{2}{3}\)\(\Leftrightarrow3\left(x-1\right)=2\left(x+2\right)\)
\(\Leftrightarrow3x-3=2x+4\)
\(\Leftrightarrow3x-2x=4+3\)
\(\Leftrightarrow x=7\)
Vậy \(x=7\)
\(\frac{x-1}{x+2}=\frac{2}{3}\)
\(\Leftrightarrow3\left(x-1\right)=2\left(x+2\right)\)
\(\Leftrightarrow3x-3=2x+4\)
\(\Leftrightarrow3x-2x=3+4\)
\(\Leftrightarrow x=7\)
vẽ AE _|_ CD tại E, gọi M là giao điểm của AE và CK
\(\Delta\)ADC có CK,AE ;à hai đường cao cắt nhau tại M
=> M là trực tâm tam giác ADC
=> DM_|_AC, AB _|_AC => AB//DM(đpcm)
\(\Delta\)ADB=\(\Delta\)DAM (g.c.g) => AB=DM
\(\Delta\)HAB=\(\Delta\)KDM (cạnh huyền-góc nhọn) => AH=DK (đpcm)
Bài giải : a) Ta có : góc XAB = ( góc ABC + góc ACB ) => 1/2 góc BAX = 1/2 ( góc ABC + góc ACB )
=> góc EAB = 1/2 ( góc B + góc C ) = B+ C/2 .
b) Ta có : góc B + góc C = 1800 - 600 = 1200 => góc EAB = 1/2.120 = 600. Xét tam giác AEC ta lại có : góc C = 1800 - góc EAC - góc AEC = 1800 - ( góc EAB + góc ABC ) - góc CEA = 1800 - ( 600 + 600 ) - 150 = 450. Xét tam giác ABC : góc A + góc B+ góc C = 1800
=> góc B = 1800 - góc A - góc C = 1800 - 600 -450 = 750 .
\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2010}\).
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(=-\frac{1}{x+3}=\frac{1}{2010}\)
\(x=2010-\left(-3\right)=2013\)
\(\frac{x-2}{-\frac{2}{9}}=\frac{-2}{x-2}\)
=> (x - 2)2 = \(\frac{-2}{9}.\left(-2\right)\)
=> (x - 2)2 = 9
=> \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(\frac{x-2}{\frac{-2}{9}}=\frac{-2}{x-2}\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)=\frac{-2}{9}.\left(-2\right)\)
\(\Rightarrow\left(x-2\right)^2=\frac{4}{9}\)
\(\Rightarrow\left(x-2\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-2=\frac{2}{3}\\x-2=-\frac{2}{3}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}+2\\x=-\frac{2}{3}+2\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=\frac{4}{3}\end{cases}}\)
Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{4}{3}\)
Học tốt
Tìm x, y
Ta có: \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\forall x\inℤ\\\left|y^2-9\right|^{2014}\ge0\forall x\inℤ\end{cases}}\)
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y^2=\pm3\end{cases}}\)
Vậy \(x=2\) và \(y=\pm3\).
Sửa lại phần ta có: \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\forall x\inℚ\\\left|y^2-9\right|^{2014}\ge0\forall y\inℚ\end{cases}}\)