K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

ta có:\(\widehat{aOb}\) = 180

\(\Rightarrow\)3 x \(\widehat{aOc}\)=180

\(\Rightarrow\)\(\widehat{aOc}\)=180 : 3 = 60

\(\Rightarrow\)\(\widehat{aOc}\)=\(\widehat{bOd}\)= 60 (2 góc đối đỉnh)

ta có: \(\widehat{aOc}\)+\(\widehat{cOb}\)= 180 (2 góc kề bù)

\(\Rightarrow\)60 + \(\widehat{cOb}\)= 180

\(\Rightarrow\)\(\widehat{cOb}\)= 180 - 60 = 120

\(\Rightarrow\)\(\widehat{aOd}\)=\(cOb\)= 120 (2 goc đối đỉnh)

Vậy \(\widehat{aOc}\)= 60;\(\widehat{cOb}\)= 120;\(\widehat{bOd}\)= 60;\(\widehat{aOd}\)=120

14 tháng 8 2020

cảm ơn bạn

31 tháng 7 2020

\(\left|x+5\right|-4=3\)

\(\Rightarrow\left|x+5\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x+5=7\\x+5=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-12\end{cases}}\)

31 tháng 7 2020

\(\left|x+5\right|-4=3\Leftrightarrow\left|x+5\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=7\\x+5=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-12\end{cases}}\)

vậy x=2 hoặc x=-12

\(\frac{a-b}{a}=\frac{c-d}{c}\)

\(\Leftrightarrow ac-bc=ac-ad\)

\(\Leftrightarrow ac-ac-bc+ad=0\)

\(\Leftrightarrow-bc+ad=0\)hay như nào =))

31 tháng 7 2020

Trả lời:

\(A=\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)

\(A=\left(\frac{36}{12}-\frac{3}{12}+\frac{8}{12}\right)-\left(\frac{75}{15}+\frac{5}{15}-\frac{18}{15}\right)-\left(\frac{24}{4}-\frac{7}{4}+\frac{6}{4}\right)\)

\(A=\frac{41}{12}-\frac{62}{15}-\frac{23}{4}\)

\(A=\frac{-97}{15}\)

Học tốt

31 tháng 7 2020

\(A=\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)

\(\Rightarrow A=3-\frac{1}{4}+\frac{2}{3}-5-\frac{1}{3}+\frac{6}{5}-6+\frac{7}{4}-\frac{3}{2}\)

\(\Rightarrow A=\left(3-5-6\right)+\left(-\frac{1}{4}+\frac{7}{4}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+\frac{6}{5}-\frac{3}{2}\)

\(\Rightarrow A=-8+\frac{3}{2}+\frac{1}{3}+\frac{6}{5}-\frac{3}{2}\)

\(\Rightarrow A=-8+\frac{1}{3}+\frac{6}{5}\)

\(\Rightarrow A=-\frac{97}{15}\)

31 tháng 7 2020

1)

Ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)=> \(\frac{a^2}{9}=\frac{b^2}{16}=\frac{c^2}{25}\)=> \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}\)

Đặt \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}=k\)

=> \(\hept{\begin{cases}a^2=9k\\2b^2=32k\\c^2=25k\end{cases}}\)

=> \(a^2+2b^2-c^2=9k+32k-25k=16k\)

=> \(16k=144\)

=> \(k=9\)

Do đó \(\hept{\begin{cases}a^2=9\cdot9\\2b^2=32\cdot9\\c^2=25\cdot9\end{cases}}\Rightarrow\hept{\begin{cases}a^2=81\\b^2=144\\c^2=225\end{cases}}\Rightarrow\hept{\begin{cases}a=9\\b=12\\c=15\end{cases}}\)

2) Ta có : \(\frac{a}{5}=\frac{b}{7}=\frac{c}{9}\)=> \(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}=\frac{a^2+b^2-c^2}{25+49-81}=\frac{-28}{-7}=4\)

=> \(\hept{\begin{cases}\frac{a^2}{25}=4\\\frac{b^2}{49}=4\\\frac{c^2}{81}=4\end{cases}}\Rightarrow\hept{\begin{cases}a^2=100\\b^2=196\\c^2=324\end{cases}}\Rightarrow\hept{\begin{cases}a=10\\b=14\\c=18\end{cases}}\)

31 tháng 7 2020

a) đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

đặt \(a^2+2b^2-c^2=144\)

\(\Leftrightarrow\left(3k\right)^2+2\left(4k\right)^2-\left(5k\right)^2=144\)

\(\Leftrightarrow9k^2+32k^2-25k^2=144\)

\(\Leftrightarrow k^2\left(9+32-25\right)=144\)

\(\Leftrightarrow k^216=144\)

\(\Leftrightarrow k^2=9\)

\(\Leftrightarrow k=\sqrt{9}=\pm3\)

do đó 

\(\frac{a}{3}=k\Leftrightarrow\frac{a}{3}=\pm3\Rightarrow\hept{\begin{cases}a=3.3=9\\a=3.\left(-3\right)=-9\end{cases}}\)

\(\frac{b}{4}=k\Leftrightarrow\frac{b}{4}=\pm3\Rightarrow\hept{\begin{cases}b=4.3=12\\b=4.\left(-3\right)=-12\end{cases}}\)

\(\frac{c}{5}=k\Leftrightarrow\frac{c}{5}=\pm3\Rightarrow\hept{\begin{cases}c=5.3=15\\c=5.\left(-3\right)=-15\end{cases}}\)

vậy các cặp a,b,c thỏa mãn là \(\left\{a=9;b=12;c=15\right\}\left\{a=-9;b=-12;c=-15\right\}\)

Xét tam giác ABC và tam giác CDA , có :

AC chung

AB = CD ( vì cùng bằng R \(\in\)đường tròn tâm C )

BC = DA ( vì cùng bằng R \(\in\)đường tròn tâm B )

\(\Rightarrow\)T.giác ABC = t.giác CDA ( c.c.c )

=> BAC = DCA ( 2 góc tù )

Mà 2 góc này ở vị tí So le trong .

=> AD // BC

31 tháng 7 2020

\(\left(\frac{7}{36}-\frac{\frac{5}{48+11}}{24}\right)\cdot4\)

\(=\left(\frac{7}{36}-\frac{5}{59}:24\right)\cdot4\)

\(=\left(\frac{7}{36}-\frac{5}{59}\cdot\frac{1}{24}\right)\cdot4\)

\(=\left(\frac{7}{36}-\frac{5}{1416}\right)\cdot4=\frac{811}{4248}\cdot4=\frac{811}{1062}\)

Đề bài như thế này hay sao vậy? Mỗi khi bạn biểu tính phân số thì bạn gõ latex cho nó dễ

31 tháng 7 2020

\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)

=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)

=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Đến đây bạn tự làm tiếp

31 tháng 7 2020

\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Theo tính chất của dãy tỉ số bằng nhau thì 

\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)

\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)

\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)

Tương tự đến hết, kiểm tra lại hộ mk nhé ! 

\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)

Thay vào phương trình 1 ta có : 

\(6\left(10+y\right)-5y=0\)

\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)

Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)

à mk xin lỗi d ko áp dụng đc 

\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)

Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)

Làm nốt nhé ! 

30 tháng 7 2020

a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

Từ đó suy ra x = 11,y = 17,z = 23

b)

a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)

b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)

Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)

c) Tự làm nhé