K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

toàn cấp 2 ha

\(A=x^2+y^2-2\left(x-y\right)\)

\(A=x^2+y^2-2x+2y\)

\(A=\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(A=\left(x-1\right)^2+\left(y+1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0\)\(\Rightarrow A\ge-2\)

Dấu ''='' xảy ra khi: \(\hept{\begin{cases}x-1=0\\y+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

Vậy GTNN của A là A=-2 khi x=1 và y=-1

\(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)

\(B=\left[x\left(x+1\right)\right]\left[\left(x-3\right)\left(x+4\right)\right]\)

\(B=\left(x^2+x\right)\left(x^2+x-12\right)\)

Đặt \(x^2+x=a\)ta được;

\(B=a\left(a-12\right)=a^2-12a=\left(a^2-2.a.6+36\right)-36\)\(=\left(a-6\right)^2-36\)

Vì \(\left(a-6\right)^2\ge0\)\(\Rightarrow\left(a-6\right)^2-36\ge-36\)

Dấu ''='' xảy ra khi \(a-6=0\Rightarrow a=6\Rightarrow x^2+x-6=0\)\(\Rightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)

\(\Rightarrow x\left(x+3\right)-2\left(x+3\right)=0\)\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Vậy GTNN của B là B=-36 khi x=-3 hoặc x=2

14 tháng 7 2019

ta có 0<x<1<=>\(\sqrt{0}\)<\(\sqrt{x}\)<\(\sqrt{1}\)<=>0<\(\sqrt{x}\)<1           (1)

Nhân cả hai vế của bất đẳng thức \(\sqrt{x}\) <1 với \(\sqrt{x}\)ta được

   \(\sqrt{x}\).\(\sqrt{x}\)<1.\(\sqrt{x}\)

<=>            x  <\(\sqrt{x}\)

<=>     0   <\(\sqrt{x}\)-x

hay\(\sqrt{x}\)-x>0(đpcm)

Vậy...

KHÔNG BIẾT ĐÚNG KO , SAI THÔI NHA

Xét \(\sqrt{x}-x\) = \(-\left(x-\sqrt{x}\right)\)

                               =  \(-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)

                              = \(\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\)

 \(\left(\sqrt{x}-\frac{1}{2}\right)^2< \frac{1}{4}với.0< x< 1\)

\(\Rightarrow\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2>0\) với 0<x<1

hay \(\sqrt{x}-x>0\)với 0 <x<1

#mã mã#

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm

14 tháng 7 2019

mk ko bt viết sigma trên đây :'< bn thông cảm

Đặt \(A=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(=\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{a+c+d}+\frac{a+b+c+d}{a+b+d}+\frac{a+b+c+d}{a+b+c}-4\)

\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

\(\ge\frac{16\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}-4=\frac{16}{3}-4=\frac{4}{3}\)

Đặt \(B=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d}\)

\(=\frac{a+b+c+d}{a}+\frac{a+b+c+d}{b}+\frac{a+b+c+d}{c}+\frac{a+b+c+d}{d}-4\)

\(=\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)-4\ge\frac{16\left(a+b+c+d\right)}{a+b+c+d}-4=12\)

\(\Rightarrow\)\(S=A+B\ge\frac{4}{3}+12=\frac{40}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)

13 tháng 7 2019

trường hợp thứ  nhất:  \(X=1\)hay \(X=0\)

thì  \(X^2=X\)

trường hợp thứ  hai : \(X>1\)

thì  \(X^2>X\)

chúc học tốt

13 tháng 7 2019

\(2.\left(x-4\right).\sqrt{x-2}+\left(x-2\right).\sqrt{x+1}+2x-6=0\)

\(\Leftrightarrow2.\sqrt{x-2}.x-8\sqrt{x-2}+\sqrt{x+1}.x-2\sqrt{x+1}+2x-6=0\)

Đặt x = u, ta có:

\(\Leftrightarrow2u\left(u^2+2\right)-8u+\sqrt{\left(u^2+2\right)+1}.\left(u^2+2\right)-2\sqrt{\left(u^2+2\right)+1}+2\left(u^2+2\right)-6=0\)

\(\Leftrightarrow\hept{\begin{cases}u=1\\u=-\frac{\sqrt{10}-2}{3}\\u=-\sqrt{2}-2\end{cases}}\Leftrightarrow x=3\)

=> x = 3

Không chắc nhé :v

13 tháng 7 2019

ĐK \(x\ge2\)

Pt 

<=> \(2\left(x-4\right)\left(\sqrt{x-2}-1\right)+\left(x-2\right)\left(\sqrt{x+1}-2\right)+6x-18=0\)

<=> \(2\left(x-4\right).\frac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\frac{x-3}{\sqrt{x+1}+2}+6\left(x-3\right)=0\)

<=> \(\orbr{\begin{cases}x=3\\\frac{2\left(x-4\right)}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}+6=0\left(2\right)\end{cases}}\)

Pt (2) \(VT=\frac{2\left(x-2\right)}{\sqrt{x-2}+1}+6-\frac{4}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}>0\forall x\ge2\)

=> Pt (2) vô nghiệm

Vậy x=3