cho hỏi 19872823948937289472375893758974987589479857892758347+857465465834653759629645892374872389478923749=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét hai tam giác vuông ABH và tam giác vuông ACH có :
góc AHB = góc AHC = 90độ
AB = AC ( vì tam giác ABC cân tại A )
cạnh AH chung
Do đó : tam giác ABH = tam giác ACH ( cạnh huyền - cạnh góc vuông )
=> HB = HC ( cạnh tương ứng )
và góc BAH = góc CAH ( góc tương ứng )
b,Xét tam giác AHE và tam giác AHF có :
góc AEH = góc AFH = 90độ
cạnh AH chung
góc HAE = góc HAF ( theo câu a )
Do đó ; tam giác AHE = tam giác AHF ( cạnh huyền - góc nhọn )
=> AE = AF ( cạnh tương ứng )
=> tam giác AEF cân tại A
=> góc AEF = góc AFE = \(\frac{180^0-\widehat{A}}{2}\) ( 1 )
Vì tam giác ABC là tam giác cân nên :
góc ABC = góc ACB = \(\frac{180^0-\widehat{A}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : góc AEF = góc AFE = góc ABC = góc ACB
mà góc AEF = góc ABC và ở vị trí đồng vị
=> EF // BC .
Học tốt
Xét \(\Delta BOC\)có : \(\widehat{B}+\widehat{O}+\widehat{C}=180^o\)( ĐL tổng 3 góc trong 1 tam giác )
\(\widehat{B}+126^o+\widehat{C}=180^o\)
Giải :
Xét tam giác BOC :
\(\widehat{OBC}+\widehat{OCB}=180^o-126^o=54^o\)
Vì BO, CO là phân giác nên : \(\widehat{OBC}=\frac{1}{2}\widehat{ABC}\)và \(\widehat{OCB}=\frac{1}{2}\widehat{ACB}\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=2.54=108^o\)
Xét tam giác ABC :
\(\Rightarrow\widehat{BAC}=180-108=72^o\)
Mình cho bạn công thức tổng quát luôn nè : \(\widehat{BOC}=\frac{180^o-\widehat{BAC}}{2}\)
a.
+) Với x lớn hơn hoặc bằng 0
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)
\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)
Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0
+) Với x < - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)
\(=2020-2x-3-2x=2017-4x\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)
+) Với x = - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)
\(=2020+2+1=2023\left(tm\right)\)
Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)
a) \(5x^2+5xy-x-y\)
\(=5x.\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
b) \(5x^2-10y+5y^2-20z^2\)
\(=5.\left(x^2-2y+y^2-4z^2\right)\)
Đề sai ở đâu đó.
c) \(4x^2-y^2+4x+1\)
\(=\left(4x+4x^2+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+y+1\right)\left(2x-y+1\right)\)
Ta có A = \(133\left(\frac{1}{1.1996}+\frac{1}{2.1997}+...+\frac{1}{17.2002}\right)\)
=> 1995A = \(133\left(\frac{1995}{1.1996}+\frac{1995}{2.1997}+...+\frac{1995}{17.2002}\right)\)
=> 1995A = \(133\left(1-\frac{1}{1996}+\frac{1}{2}-\frac{1}{1997}+...+\frac{1}{17}-\frac{1}{2002}\right)\)
=> 1995A = \(133\left[\left(1+\frac{1}{2}+...+\frac{1}{17}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+...+\frac{1}{2002}\right)\right]\)
=> A = \(\frac{1}{15}\left[\left(1+\frac{1}{2}+...+\frac{1}{17}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+...+\frac{1}{2002}\right)\right]\)(1)
Lại có B = \(\frac{17}{15}\left(\frac{1}{1.18}+\frac{1}{2.19}+...+\frac{1}{1995.2012}\right)\)
=> 17B = \(\frac{17}{15}\left(\frac{17}{1.18}+\frac{17}{2.19}+...+\frac{17}{1995.2012}\right)\)
=> 17B = \(\frac{17}{15}\left(1-\frac{1}{18}+\frac{1}{2}-\frac{1}{19}+...+\frac{1}{1995}-\frac{1}{2012}\right)\)
=> 17B = \(\frac{17}{15}\left[\left(1+\frac{1}{2}+...+\frac{1}{1995}\right)-\left(\frac{1}{18}+\frac{1}{19}+...+\frac{1}{2012}\right)\right]\)
=> 17B = \(\frac{17}{15}\left[\left(1+\frac{1}{2}+...+\frac{1}{17}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+...+\frac{1}{2012}\right)\right]\)
=> B = \(\frac{1}{15}\left[\left(1+\frac{1}{2}+...+\frac{1}{17}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+...+\frac{1}{2012}\right)\right]\)(2)
Từ (1) và (2) => A = B
\({1 \over 2} = 2^{-1}\\ \implies 2\ = {1 \over 2}^{-1}\\ Do\ đó : 16 = 2^4 = {1 \over 2}^{-4}\\ Vậy\ số\ cần\ điền\ là\ -4\)
a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).
Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).
AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).
Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).
Đáp số: Số đo góc AMC = 110 độ.
b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).
Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).
Đáp số: Số đo góc ABE = 40 độ.
\(\text{19872823948937289472375893758974987589479857892758347+857465465834653759629645892374872389478923749}\)=494786145946979831316676594196846495686597699975696949649799696466765949
oooooo
mình ko bt các bạn làm đúng ko nhưng mà lướt đc vs tính ra cái đó thì các bạn kiên nhẫn ra phết