Cho hình chóp đỉnh S có đáy là hình bình hành ABCD. M,N,P,Q là các điểm trên BC, SC,SD,AD sao cho MN song song BS, NP song song CD, MQ song song CD.
a)Chứng minh PQ song song SA
b)Qua Q dựng Qx song song SC, Qy song song SB. Tìm giao điểm của Qx với mặt phẳng SAB, Qy với mặt phẳng SCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S A B C D M N P Q K
a/
Ta có
\(\dfrac{BM}{BC}=\dfrac{AN}{AD}\left(gt\right)\) => AM//MN//CD (Talet đảo) => MN//(SAB)
\(\dfrac{AN}{AD}=\dfrac{SP}{SD}\left(gt\right)\) => PN//SA (Talet đảo) => PN//(SAB)
=> (MNP)//(SAB) (Một mặt phẳng chứa 2 đường thẳng cắt nhau và cùng // với 1 mặt phẳng cho trước thì 2 mặt phẳng đó // với nhau)
Trong mp (SCD) từ P dựng đường thẳng // CD cắt SC tại Q
=> PQ//MN (cùng song song với CD
Mà \(P\in\left(MNP\right)\Rightarrow PQ\in\left(MNP\right)\Rightarrow Q\in\left(MNP\right)\)
đồng thời \(Q\in SC\)
=> Q là giao của SC với (MNP)
b/
Thiết diện của S.ABCD với (MNP) là tứ giác MNPQ
c/
Ta có
\(NP\left(SAD\right);K\in NP\Rightarrow K\in\left(SAD\right)\)
\(MQ\in\left(SBC\right);K\in MQ\Rightarrow K\in\left(SBC\right)\)
\(S\in\left(SAD\right);S\in\left(SBC\right)\)
=> SK là giao tuyến của 2 mặt phẳng (SAD) và (SBC)
Ta có AD//BC (cạnh đối hình vuông)=> AD//(SBC) và \(AD\in\left(SAD\right)\)
=> AD//SK(Một mp chứa 1 đường thẳng // với 1 mặt phẳng cho trước và 2 mặt phẳng cắt nhau thì đường thẳng đó // với giao tuyến)
Vậy khi M di động trên BC thì K thuộc nửa đường thẳng SK//AD
d/
ta có
SB là giao tuyến của (SAB) với (SBC)
MQ là giao tuyến của (MNP) với (SBC)
(MNP)//(SAB) (cmt)
=> SB//MQ (Hai mp song song với nhau bị cắt bởi mp thứ 3 thì 2 giao tuyến tạo thành song song với nhau)

a: Xét ΔSAB có M,N lần lượt là trung điểm của SA,SB
=>MN là đường trung bình của ΔSAB
=>MN//AB
mà AB//CD
nên MN//CD
b: Trong mp(ABCD), gọi O là giao điểm của AC và BD
Trong mp(SBD), gọi K là giao điểm của DN và SO
Chọn mp(SAC) có chứa SC
\(K=DN\cap SO\)
=>\(K\in\left(DAN\right)\cap\left(SAC\right)\)
=>\(\left(DAN\right)\cap\left(SAC\right)=AK\)
Gọi P là giao điểm của AK với SC
=>P là giao điểm của SC với (DAN)

b: Chọn mp(SAC) có chứa SC
\(I\in SA\subset\left(SAC\right);I\in\left(BIK\right)\)
Do đó: \(I\in\left(SAC\right)\cap\left(BIK\right)\)
Trong mp(ABCD), gọi H là giao điểm của AC và BK
=>\(H\in\left(SAC\right)\cap\left(BIK\right)\)
=>\(\left(SAC\right)\cap\left(BIK\right)=HI\)
Gọi M là giao điểm của HI với SC
=>M là giao điểm của SC với mp(BIK)