K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

S A B C D M H K N O

a/

Ta có

\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)

b/

Xét tg SAD có

MA=MD; HA=HS => MH là đường trung bình của tg SAD

=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)

Xét tg SAB có

HA=HS; KS=KB => MH là đường trung bình của tg SAB

=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)

Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến

c/

Gọi O là trung điểm BD, Nối MO cắt BC tại N

Xét tg ABD có

MA=MD; OB=OD => MO là đường trung bình của tg ABD

=> MO//AB; mà HK//AB (cmt) => MO//HK

=> M; O; H; K cùng thuộc mặt phẳng MKH 

\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)

Mà \(N\in BC\)

=> N là giao của BC với (MKH)

Ta có MO//HK => MN//HK => MHNK là hình thang

 

 

 

24 tháng 8 2023

Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^6_{20}\)

a) Gọi A là biến cố: "Tất cả đều là chính phẩm."

Ta thấy \(\left|A\right|=C^6_{15}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{ \left|\Omega\right|}=\dfrac{C^6_{15}}{C^6_{20}}=\dfrac{1001}{7752}\)

b) Gọi B là biến cố: "Tất cả đều là phế phẩm."

 Rõ ràng \(\left|B\right|=0\) (vì chỉ có 5 phế phẩm nhưng ta chọn tới 6 sản phẩm nên không thể có chuyện cả 6 sản phẩm được chọn đều là phế phẩm) \(\Rightarrow P\left(B\right)=0\)

c) Gọi C là biến cố: "Có ít nhất 3 chính phẩm."

\(P_i\) là biến cố: "Có đúng \(i\) chính phẩm." \(\left(3\le i\le6\right)\)

Do \(P_i\) đôi một rời nhau và \(C=\cup^6_{i=3}P_i\) nên \(\left|C\right|=\sum\limits^6_{i=3}\left|P_i\right|\)

Ta thấy \(\left|P_i\right|=C^i_{15}.C^{6-i}_5\) \(\Rightarrow\sum\limits^6_{i=3}\left|P_i\right|=\sum\limits^6_{i=3}C^i_{15}.C^{6-i}_5=38220\)

hay \(\left|C\right|=38220\)

Từ đó \(P\left(C\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{38220}{C^6_{20}}=\dfrac{637}{646}\)

 

24 tháng 8 2023

Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^4_{52}\)

a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."

Ta thấy ngay \(\left|A\right|=4.C^4_{13}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{4.C^4_{13}}{C^4_{52}}=\dfrac{44}{4165}\)

b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."

Dễ thấy \(\left|B\right|=13^4\)

Do đó \(P\left(B\right)=\dfrac{\left|B\right|}{\left|\Omega\right|}=\dfrac{13^4}{C^4_{52}}=\dfrac{2197}{20825}\)

24 tháng 8 2023

Số phần tử của không gian mẫu: ∣Ω∣=�524

a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."

Ta thấy ngay ∣�∣=4.�134

⇒�(�)=∣�∣∣Ω∣=4.�134�524=444165

b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."

Dễ thấy ∣�∣=134

Do đó �(�)=∣�∣∣Ω∣=134�524=219720825

đây nha  

1
24 tháng 8 2023

\(\left\{{}\begin{matrix}u_1=1;u_2=2\\\dfrac{2}{u_{n+2}}=\dfrac{1}{u_{n+1}}+\dfrac{1}{u_n}\end{matrix}\right.\)

Giả sử dãy số trên có giới hạn hữu hạn là \(L\)

\(\Rightarrow limu_n=2limu_{n+2}-limu_{n=1}=L\)

mà \(\left\{{}\begin{matrix}2limu_{n+2}=2.0=0\\limu_{n+1}=0\end{matrix}\right.\)

\(\Rightarrow limu_n=0\)

0

1
24 tháng 8 2023

Ta có \(s_n\) hội tụ nên \(\lim\limits_{n\rightarrow+\infty}x_n=+\infty\)

Nếu \(2-\cos2\alpha\ne0\) thì

\(\lim\limits_{n\rightarrow+\infty}x_{n+1}=\lim\limits_{n\rightarrow+\infty}\dfrac{\left(2+\cos2\alpha\right)x_n+\cos^2\alpha}{\left(2-2\cos\alpha\right)x_n+2-\cos2\alpha}=\dfrac{2+\cos\alpha}{2-2\cos2\alpha}\), vô lí.

 Do đó \(2-2\cos2\alpha=0\) \(\Leftrightarrow\alpha=k\pi\left(k\inℤ\right)\)

 Với \(\alpha=k\pi\left(k\inℤ\right)\)

 Ta có \(x_{n+1}=3x_n+1\)  \(\Leftrightarrow2x_{n+1}+1=3\left(2x_n+1\right)=...=3^{n+1}\left(2x_1+1\right)=3^{n+1}\). Do đó:

 \(s_n=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^n}=\dfrac{1-\dfrac{1}{3^n}}{2}\)

Vậy nên \(\left(s_n\right)\) có giới hạn hữu hạn và \(\lim\limits_{n\rightarrow+\infty}=\dfrac{1}{2}\)

0