khi chia số tự nhiên a cho các số 5,7 11 có số dư lần lượt là là 3, 4,6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Dùng phương pháp phản chứng em nhé.
Giả sử tồn tại một số chính phương n thỏa mãn đề bài khi đó
Vì n là số chính phương nên n chia 3 chỉ có thể dư 1 hoặc không dư (tính chất của số chính phương)
Mặt khác ta lại có: Tổng các chữ số của n là 2024
2024 : 3 = 674 dư 2
⇒ A : 3 dư 2 (trái với giải thiết)
Vậy điều giả sử là sai nên không tồn tại số tự nhiên n nào thỏa mãn đề bài.
Kết luận n \(\in\) \(\varnothing\)
Lời giải:
Tổng các chữ số của $n$ là $2024$. Ta có $2+0+2+4=8$ nên $n$ chia cho $9$ dư $8$.
Mà 1 số chính phương khi chia cho $9$ dư $0,1,4,7$ nên không tồn tại $n$ thỏa mãn đề.

1 desert
2 river
3 lake
4 island
5 waterfall
6 forest
7 valley
8 cave

- tôn trọng sự thật là công nhận cái có thật , đã và đang diễn ra trong thực tế, suy nghĩ, nói và làm theo đúng sự thật
- biểu hiện : HS nói đúng sự thật với thầy cô, bạn bè và những người xung quanh; người dân nói thật, cung cấp đúng thông tin với những người có trách nghiệm; nhận xét, đánh giá đúng sự thật, dù có thể ko có lợi cho mik =.=

1.
Xét tổng $2+4+6+....+2014$:
Số số hạng: $(2014-2):2+1=1007$
Giá trị tổng trên là: $(2014+2).1007:2=1010021$
Xét tổng $3+5+...+2011$:
Số số hạng: $(2011-3):2+1=1005$
Giá trị tổng trên: $(2011+3).1005:2=1012035$
$A=1010021-1012035=-2014$

Số nơ-ron thần kinh trong não người:
100000000000 = 10¹¹ (nơ-ron)
Số tế bào não:
100000000000 : 10% = 1000000000000 = 10¹² (tế bào)

\(S=3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)
\(3S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2\)
\(3S+S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2+3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)\(4S=3^{2025}-3\)
\(S=\dfrac{3^{2025}-3}{4}\)
S = 32024 - 32023 + 32022 - 32021 +... + 32 - 3
3.S = 32025 - 32024 + 32022 -32021 + ....+ 33 - 32
3S + S = 32025 - 32024 + 32022 - 32021 +...+33 - 32+(32024-32023+...-3)
4S = 32025 - 32024 + 32022 - 32021+...+33-32 + 32024-32023+...-3
4S = 32025 - (32024 - 32024) -...-(32 - 32) - 3
4S = 32025 - 3
S = \(\dfrac{3^{2025}-3}{4}\)

Vì a chia cho 5, 7, 11 lần lượt có số dư là: 3; 4; 6 nên a thêm vào 192 đơn vị thì chia hết cho cả 5; 7; 11
Ta có : \(\left\{{}\begin{matrix}a+192⋮5\\a+192⋮7\\a+192⋮11\end{matrix}\right.\)
⇒ a + 192 \(\in\) BC(5; 7; 11)
5 = 5; 7 = 7; 11 = 11 ⇒ BCNN(5; 7; 11) = 5.7.11 = 385
⇒ a + 192 = 385.k (k \(\in\) N*)
⇒ a = 385.k - 192 (k \(\in\) N*)