Cho tam giác ABC có P; Q; R tương ứng là các điểm nằm trên các cạnh BC, CA, AB sao cho chúng chia ba chu vi tam giác ABC, tức là \(AQ+AR=BR+BP=CP+CQ\). Chứng minh rằng chu vi tam giác PQR không nhỏ hơn một nửa chu vi tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1 (đồ thị): Đầu tiên ta xác định miền nghiệm của hệ bất phương trình sau: \(\left\{{}\begin{matrix}x>0\\y>0\\\dfrac{x}{3}+\dfrac{y}{4}\le1\end{matrix}\right.\) như sau:
Sau đó ta tìm tất cả các điểm nguyên nằm ở miền trong tam giác OAB. Ta nhận thấy các điểm này là \(\left(1,1\right);\left(1,2\right);\left(2,1\right)\). Vậy các nghiệm (x; y) của bpt là \(\left(1;1\right),\left(1;2\right),\left(2;1\right)\)
Cách 2: (đại số)
Ta có \(\dfrac{x}{3}+\dfrac{y}{4}\le1\) nên \(\dfrac{x}{3}< 1\) \(\Leftrightarrow x< 3\) \(\Rightarrow x\in\left\{1,2\right\}\)
\(\dfrac{y}{4}< 1\Rightarrow y< 4\Rightarrow y\in\left\{1,2,3\right\}\)
Thử lại, ta thấy chỉ có các cặp \(\left(x;y\right)=\left(1;1\right),\left(1;2\right),\left(2;1\right)\) là thỏa mãn. Vậy...
Trước hết ta chứng minh bổ đề sau:
Bổ đề 1: Cho tam giác ABC và 1 điểm M trên cạnh BC. Khi đó: \(\overrightarrow{AM}=\dfrac{MC}{BC}\overrightarrow{AB}+\dfrac{MB}{BC}\overrightarrow{AC}\)
Thật vậy, ta có \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
\(=\overrightarrow{AB}+\dfrac{BM}{BC}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{BM}{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)
\(=\left(1-\dfrac{BM}{BC}\overrightarrow{AB}\right)+\dfrac{BM}{BC}\overrightarrow{AC}\)
\(=\dfrac{CM}{BC}\overrightarrow{AB}+\dfrac{BM}{BC}\overrightarrow{AC}\), bổ đề 1 được chứng minh.
Gọi P là giao điểm của AI và BC. Ta có:
\(\dfrac{MA}{MB}.\dfrac{PB}{PC}.\dfrac{NC}{NA}=1\) \(\Rightarrow x.\dfrac{PB}{PC}.\dfrac{1}{y}=1\) \(\Rightarrow\dfrac{PB}{PC}=\dfrac{y}{x}\) \(\Rightarrow\dfrac{CP}{CB}=\dfrac{x}{x+y}\)
Mặt khác, \(\dfrac{IP}{IA}.\dfrac{MA}{MB}.\dfrac{CB}{CP}=1\) \(\Rightarrow\dfrac{IP}{IA}.x.\dfrac{x+y}{x}=1\) \(\Rightarrow\dfrac{IP}{IA}=\dfrac{1}{x+y}\)
Do đó \(\overrightarrow{AI}=\left(x+y\right)\overrightarrow{IP}\)
Mà theo bổ đề 1: \(\overrightarrow{IP}=\dfrac{PC}{BC}\overrightarrow{IB}+\dfrac{PB}{BC}\overrightarrow{IC}\)
\(=\dfrac{x}{x+y}\overrightarrow{IB}+\dfrac{y}{x+y}\overrightarrow{IC}\)
\(\Rightarrow\overrightarrow{AI}=x\overrightarrow{IB}+y\overrightarrow{IC}\) (đpcm)
\(VT=\cos^2a-2.\dfrac{1}{2}\left[\cos\left(a+b\right)+\cos\left(a-b\right)\right].\cos\left(a+b\right)+\cos^2\left(a+b\right)=\)
\(=\cos^2a-\cos^2\left(a+b\right)-\cos\left(a+b\right)\cos\left(a-b\right)+\cos^2\left(a+b\right)=\)
\(=\cos^2a-\dfrac{1}{2}\left(\cos2a+\cos2b\right)=\)
\(=\dfrac{2\cos^2a-\cos^2a+\sin^2a-1+2\sin^2b}{2}=\)
\(=\dfrac{\left(\cos^2a+\sin^2a\right)-1+2\sin^2b}{2}=\sin^2b=VP\)
cos2a - cos (a+b) (2 cosa . cosb - cos (a+b) = sin2b
Cos2a - ( cos a.cosb- sina .sinb)( 2 cosa .cosb - ( cosa .cosb - sina .sinb) = sin2b
cos2a - (cosa.cosb - sina.sinb) (cosa.cosb + sina .sinb) = sin2b
cos2a - ( cos2a . cos2b - sin2a .sin2b = sin2b ) .
1 - sin2a - ( 1 - sin2a ) ( 1 - sin2b) - sin2a .sin2b = sin2b
1 - sin2a - ( 1- sin2b - sin2a + sin2a .sin2b - sin2 a .sin2b = sin2b
1 - sin2a -1 + sin2 b + sin2a = sin2b
Sin2b = Sin2b điều đã CM
:}
hog bic lm=))