\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}vàx-y-z=28\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{4009+2}{4011}=1\)
=>\(x-1=2005;3-y=2006\)
=>x=2005+1=2006; y=3-2006=-2003
a: 4x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{4}\)
7y=4z
=>\(\dfrac{y}{4}=\dfrac{z}{7}\)
Do đó: \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}\)
mà x-y-z=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=\dfrac{x-y-z}{5-4-7}=\dfrac{24}{-6}=-4\)
=>\(x=-4\cdot5=-20;y=-4\cdot4=-16;z=-4\cdot7=-28\)
b:
Sửa đề: x+y-z=38
\(\dfrac{x}{5}=\dfrac{y}{4}\)
=>\(\dfrac{x}{15}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{2}\)
=>\(\dfrac{y}{12}=\dfrac{z}{8}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}\)
mà x+y-z=38
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta đưọc:
\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}=\dfrac{x+y-z}{15+12-8}=\dfrac{38}{19}=2\)
=>\(x=2\cdot15=30;y=2\cdot12=24;z=2\cdot8=16\)
4x=5y;7y=4zvax-y-z=24
Để giải hệ phương trình này, chúng ta sẽ sử dụng phương pháp thế vào. Trước tiên, chúng ta sẽ giải phương trình đầu tiên để tìm giá trị của $x$ dựa trên $y$:
$$4x = 5y$$
$$x = \frac{5y}{4}$$
Tiếp theo, chúng ta sẽ thay thế giá trị của $x$ vào phương trình thứ hai để tìm giá trị của $z$ dựa trên $y$:
$$7y = 4z$$
$$z = \frac{7y}{4}$$
Cuối cùng, chúng ta sẽ thay thế giá trị của $x$ và $z$ vào phương trình thứ ba để tìm giá trị của $v$:
$$x - y - z = 24$$
$$\frac{5y}{4} - y - \frac{7y}{4} = 24$$
$$\frac{5y - 4y - 7y}{4} = 24$$
$$\frac{-6y}{4} = 24$$
$$-6y = 96$$
$$y = -16$$
Sau khi tìm được giá trị của $y$, chúng ta có thể tính toán các giá trị còn lại:
$$x = \frac{5y}{4} = \frac{5(-16)}{4} = -20$$
$$z = \frac{7y}{4} = \frac{7(-16)}{4} = -28$$
$$v = x - y - z = -20 - (-16) - (-28) = -20 + 16 + 28 = 24$$
Vậy, giá trị của $x$, $y$, $z$ và $v$ lần lượt là -20, -16, -28 và 24.
\(A=3x^3+6x^2-3x-x^3+\dfrac{1}{2}\)
\(=2x^3+6x^2-3x+\dfrac{1}{2}\)
Thay x=2 vào A, ta được:
\(A=2\cdot2^3+6\cdot2^2-3\cdot2+\dfrac{1}{2}=16+24-6+\dfrac{1}{2}=34,5\)
Thay x=1/3 vào A, ta được:
\(A=2\cdot\left(\dfrac{1}{3}\right)^3+6\cdot\left(\dfrac{1}{3}\right)^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
\(=\dfrac{2}{27}+\dfrac{6}{9}-1+\dfrac{1}{2}\)
\(=\dfrac{20}{27}-\dfrac{1}{2}=\dfrac{40-27}{54}=\dfrac{13}{54}\)
\(F=4x-6y+7=2\left(2x-3y\right)+7=2\cdot7+7=21\)
\(a-b=-7\)
=>a=b-7
\(E=\dfrac{3a-2b}{2a+7b}=\dfrac{3\left(b-7\right)-2b}{2\left(b-7\right)+7b}\)
\(=\dfrac{3b-21-2b}{2b-14+7b}=\dfrac{b-21}{9b-14}\)
\(K=7x-7y+4ax-4ay-5\)
\(=7\left(x-y\right)+4a\left(x-y\right)-5\)
\(=7\cdot0+4a\cdot0-5=-5\)
Lời giải:
$F(x)=x^3+x^2+(2a+3)x-3a=x^2(x-2)+3x(x-2)+(2a+9)x-3a$
$=x^2(x-2)+3x(x-2)+(2a+9)(x-2)+2(2a+9)-3a$
$=(x-2)(x^2+3x+2a+9)+(a+18)$
$\Rightarrow F(x)$ chia $x-2$ dư $a+18$
Để số dư là $14$
$\Rightarrow a+18=14$
$\Rightarrow a=-4$
Câu 1:
a: A(x)+B(x)
\(=x^3-4x^2+7x-5+4x^3-5x^3+9\)
\(=-4x^2+7x+4\)
b: A(x)-B(x)
\(=x^3-4x^2+7x-5-\left(-x^3+9\right)\)
\(=x^3-4x^2+7x-5+x^3-9\)
\(=2x^3-4x^2+7x-14\)
c: M(x)+A(x)=B(x)
=>M(x)=B(x)-A(x)
=>M(x)=-(A(x)-B(x))
\(=-2x^3+4x^2-7x+14\)
d: \(B\left(-1\right)=4\cdot\left(-1\right)^3-5\cdot\left(-1\right)^3+9\)
\(=-4+5+9=10\ne0\)
=>x=-1 không là nghiệm của B(x)
\(\dfrac{x}{2}=\dfrac{y}{3}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\)
=>\(\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
mà x-y-z=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}=-\dfrac{28}{19}\)
=>\(x=-\dfrac{28}{19}\cdot8=-\dfrac{224}{19};z=-\dfrac{28}{19}\cdot12=-\dfrac{336}{19};z=-\dfrac{28}{19}\cdot15=-\dfrac{420}{19}\)
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\\ \dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\\ \left(1\right),\left(2\right)\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng TC dãy tỉ số bằng nhau :
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{224}{19}\\y=-\dfrac{336}{19}\\z=-\dfrac{420}{19}\end{matrix}\right.\)