K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Sử dụng BĐT Cauchy-Schwarz ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Ta sẽ chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{9}{a+b+c}\le\frac{3}{ab+bc+ca}+2\)

Đặt a+b+c=t ta cần chứng minh \(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)

Dấu "=" xảy ra <=> a=b=c=1

2 tháng 5 2020

Ok thanks, mặc dù ngay chỗ cuối đúng thì phải là (2t+3)(t-3)>= 0
Nhưng hiểu rồi là OK :)

ko biết

1 tháng 5 2020

ko biết thua

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

30 tháng 4 2020

\(2xyz\le x^2+y^2z^2\)

<=> \(\left(x-yz\right)^2\ge0\) đúng với mọi x; y; z 

Vậy \(2xyz\le x^2+y^2z^2\) với mọi x; y ; z

30 tháng 4 2020

Với mọi x,y,z ta luôn có 

(x-yz)^2>=0 <=> đpcm

30 tháng 4 2020

TH1: \(x^2-4x-3\le0\Leftrightarrow2-\sqrt{7}\le x\le2+\sqrt{7}\)

bpt <=> \(-x^2+4x+3>-x^2+4x+3\) vô lí

TH2: \(x^2-4x-3>0\Leftrightarrow\orbr{\begin{cases}x>2+\sqrt{7}\\x< 2-\sqrt{7}\end{cases}}\)

bpt <=> \(x^2-4x-3>-x^2+4x+3\)

<=> \(x^2-4x-3>0\)

Đúng với \(\orbr{\begin{cases}x>2+\sqrt{7}\\x< 2-\sqrt{7}\end{cases}}\)

Vậy:...

1 tháng 5 2020

Cho bất phương trình x2-2mx+2|x-m|-m2+2>0

Tìm m để bất phương trình nghiệm đúng với mọi x thuộc R

29 tháng 4 2020

Fe + S -----> FeS 

FeS + 2 HCl ----> FeCl2 + H2

Fe + 2HCl ----> FeCl2 + H2 

a) n(Fe) = 5,6 : 56 = 0,1 ( mol) 

n ( S ) = 1,5 : 32 = 0,05 ( mol ) 

=> sau phản ứng thứ nhất : n(Fe) dư = 0,1 - 0,05 = 0,05 mol ; n(FeS) =n (S ) = 0,05 ( mol)

a) Các chất rắn trong B là: Fe và FeS

Các chất trong dung dịch A là : FeCl2 và HCl dư

b) n(H2 S) =  n ( FeS ) = 0,05 ( mol) => V( H2S) = 0,05 x 22,4 = 1,12 ( lit) 

n (H2 ) = n(Fe dư) = 0,05 ( mol ) => V( H2) = 1,12 ( lit)

29 tháng 4 2020

Hướng dẫn: 

Qua đường phân giác trong góc B lấy điểm B' đối xứng với A => B' thuộc BC  và tìm được tọa độ B' 

Qua đường phân giác trong góc C lấy điểm C' đối xứng với A => C' thuộc BC và tìm được tọa độ C' 

=> Phương trình BC đi qua B' và C' .