K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4

F(\(x\)) = 3\(x^3\) - 2\(x^2\) + 1

F(-2) = 3(-2)3 - 2.(-2)2 + 1

F(-2) = -24 - 8 + 1

F(-2) = -32 + 1

F(-2) = -31

AH
Akai Haruma
Giáo viên
16 tháng 4

$A=1.21+3.41+...+49.501$ hiển nhiên $>1$ rồi mà bạn. Bạn xem lại đề.

17 tháng 4

A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{49.50}\) 

A <  \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{49.50}\) +\(\dfrac{1}{2.3}+\dfrac{1}{4.5}+\dfrac{1}{6.7}\)+...+\(\dfrac{1}{48.49}\)

A < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\) +\(\dfrac{1}{6.7}\)+.. +\(\dfrac{1}{47.48}\)+ \(\dfrac{1}{48.49}\)\(\dfrac{1}{49.50}\) 

A < \(\dfrac{1}{1}\)-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)

A < \(\dfrac{1}{1}\) - \(\dfrac{1}{50}\) < 1 (đpcm)

\(45\%\cdot x-0,385=-1,685\)

=>\(x\cdot45\%=-1,685+0,385=-1,3\)
=>\(x=-1,3:\dfrac{9}{20}=-1,3\cdot\dfrac{20}{9}=-\dfrac{26}{9}\)

4
456
CTVHS
16 tháng 4

45% x - 0,385 = -1,685

45% x             = -1,685 + 0,385

45% x             = -1,3

0,45 x             = -1,3

        x             = -1,3 : 0,45

        x             = -2,8888

2xX+6xX=48

=>8xX=48

=>X=48:8=6

AH
Akai Haruma
Giáo viên
16 tháng 4

Lời giải:

Nếu $p,q$ cùng là snt lẻ thì $p^2-q=1$ chẵn (vô lý)

Do đó trong 2 số $p,q$ tồn tại ít nhất 1 số chẵn.

Nếu $p$ chẵn $\Rightarrow p=2$ (do $p$ nguyên tố)

$\Rightarrow q=p^2-1=2^2-1=3$ (thỏa mãn)

Nếu $q$ chẵn $\Rightarrow q=2$ (do $q$ nguyên tố)

$\Rightarrow p^2=q+1=2+1=3$ (loại)

Vậy $(p,q)=(2,3)$

16 tháng 4

Vố số nghiệm nha

\(\left(\dfrac{1}{2}x-\dfrac{3}{4}\right)\left(x+\dfrac{1}{2}\right)=0\)

=>\(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{3}{4}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 4

=-1,5=-3/2

AH
Akai Haruma
Giáo viên
16 tháng 4

Lời giải:

a.

Vì $M$ là điểm chính giữa cung $AB$ nên $OM\perp AB$

$\Rightarrow \widehat{KOA}=\widehat{MOA}=90^0$

Lại có: $\widehat{AEK}=\widehat{AEB}=90^0$ (góc nt chắn nửa đường tròn)

Xét tứ giác $EAOK$ có tổng hai góc đối nhau $\widehat{KOA}+\widehat{AEK}=90^0+90^0=180^0$

$\Rightarrow EAOK$ là tgnt.

b.

Xét tam giác $EAM$ và $FBM$ có:

$AM=BM$ (do $M$ nằm chính giữa cung AB)

$EA=FB$

$\widehat{EAM}=\widehat{EBM}=\widehat{FBM}$ (góc nt chắn cung $EM$)

$\Rightarrow \triangle EAM=\triangle FBM$ (c.g.c)

$\Rightarrow EM=FM(1)$

Và $\widehat{EMA}=\widehat{FMB}$

$\Rightarrow \widehat{EMA}+\widehat{MAF}=\widehat{FMB}+\widehat{MAF}=\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow \widehat{EMF}=90^0(2)$

Từ $(1); (2)$ suy ra $EMF$ là tam giác vuông cân tại $M$

c.

Vì $EMF$ vuông cân tại $M$ nên $\widehat{MEK}=45^0$

$\widehat{DEM}=180^0-\widehat{AEB}-\widehat{MEK}=180^0-90^0-45^0=45^0$

$\Rightarrow \widehat{DEM}=\widehat{MEK}$

$\Rightarrow EM$ là phân giác trong của $\widehat{DEK}$

$\Rightarrow \frac{MK}{MD}=\frac{EK}{ED}$

$\Rightarrow MK.ED=EK.MD$ (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 4

Hình vẽ:

\(\dfrac{600}{200}=\dfrac{300}{100}=300\%\)

AH
Akai Haruma
Giáo viên
16 tháng 4

Lời giải:

$-A=1\frac{2023}{2024}=1+\frac{2023}{2024}=1+1-\frac{1}{2024}$

$<1+1-\frac{1}{2025}=1+\frac{2024}{2025}=1\frac{2024}{2025}=-B$

$\Rightarrow A> B$