bài 1: chứng tỏ rằng :
a)\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\)<1
b) \(\dfrac{1}{11}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{13}\)+...+\(\dfrac{1}{50}\)>\(\dfrac{4}{5}\)
bài 2:
a) cho A = \(\dfrac{2^{2021}+1}{2^{2022}+1}\) và B = \(\dfrac{2^{2022}+1}{2^{2023}+1}\), so sánh A và B
b) P = (1+\(\dfrac{1}{1.3}\)).(1+\(\dfrac{1}{2.4}\)).....(1+\(\dfrac{1}{2022.2024}\)) so sánh P với 2