Tìm Min
A= x2+y2+xy-3x-3y-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình vuông 10 x 10: 1022=100
Diện tích 1 hình chữ nhật: 1.4=4
Vì 100:4=25 nên có thể phủ kín hình vuông vơis 25 hình chữ nhật.
#Châu's ngốc
a) \(p=\left(\frac{x^2-x}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x-1\right)}{x+1}.\frac{2\left(x+1\right)}{x\left(x-1\right)}=2\)
b)\(m=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)
Để m nguyên thì \(4⋮x-2\)
\(\Rightarrow x-2\in\left\{1,2,4,-1,-2,-4\right\}\)
\(\Leftrightarrow x\in\left\{3,4,6,1,0,-2\right\}\)
\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)
Để M có giá trị nguyên thì x+2 chia hết cho x-2
Ta có x+2=x-2+4
=> x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
Vì x nguyên => x-2 nguyên
=> x-2 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x-2 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -2 | 0 | 1 | 3 | 4 | 6 |
\(\Leftrightarrow y^2-3y+7-10+y=0\)
\(\Leftrightarrow y^2-2y+1-4=0\)
\(\Leftrightarrow\left(y-1\right)^2-4=0\)
\(\Leftrightarrow\left(y-1-4\right)\left(y-1+4\right)=0\)
\(\Leftrightarrow\left(y-5\right)\left(y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-3\end{cases}}\)
Vậy ....
\(y^2-3y+7=10-y\)
\(y^2-3y+7-10+y=0\)
\(y^2-2y-3=0\)
\(\left(y-3\right)\left(y+1\right)=0\)
\(y=3;-1\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x-3}{2x}\left(1-\frac{6}{x-3}\right)\)
\(=\frac{x-3}{2x}.\frac{x-9}{x-3}=\frac{x-9}{2x}\)
\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\left(x\ne\pm3;x\ne0\right)\)
\(\Leftrightarrow M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\left(1-\frac{6}{x-3}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\frac{x-9}{x-3}\)
\(\Leftrightarrow M=\frac{x-9}{2x}\)
Vậy với \(x\ne\pm3;x\ne0\)thì \(M=\frac{x-9}{2x}\)
\(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a) Để A có nghĩa \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\2-2x^2\ne0\end{cases}}\Leftrightarrow x\ne\pm1\)
b) Ta có \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
\(\Rightarrow2A=\frac{x}{x-1}+\frac{x^2+1}{1-x^2}=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x-x^2-1}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)
\(\Rightarrow A=\frac{1}{2x+2}\)
KL...
c) Để \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1}{2x+2}=\frac{1}{2}\)
\(\Leftrightarrow2x+2=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(t/m ĐKXĐ)
KL...
mk giải từng nha == tại vì mk sợ nhiều qus bị troll
\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(27x^3+18x^2+12x-18x^2-12x-8-3x\left(9x^2-3x+1\right)+\left(9x^2-3x+1\right)=x-4\)
\(27x^3-8-3\left(9x^2-3x+1\right)+9x^2-3x+1=x-4\)
\(27x^3-7-3x\left(9x^2-3x+1\right)+9x^2-3x=x-4\)
\(27x^3-7-27x^3+9x^2-3x+9x^2-3x=x-4\)
\(-7+18x^2-6x=x-4\)
\(3-18x^2+7x=0\)
\(x=\frac{-7+\sqrt{265}}{-36};\frac{-7-\sqrt{265}}{-36}\)
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(18x+9=4x^2-40x+100\)
\(18x+9-4x^2+40x-100=0\)
\(58x-91-4x^2=0\)
\(x=\frac{29-3\sqrt{53}}{4};\frac{29+3\sqrt{53}}{4}\)
Câu hỏi của Trịnh Minh Châu - Toán lớp 8 - Học toán với OnlineMath
a) \(\frac{8xy}{3x-1}:\frac{12xy^3}{5-15x}\)
\(=\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
\(=\frac{2}{3x-1}.\frac{5\left(1-3x\right)}{3y^2}\)
\(=\frac{10}{3y^2}\)
b) \(\frac{2x+1}{x-2}:\left(-\frac{2x-1}{x-2}\right)\)
\(=\frac{2x+1}{x-2}.\frac{x-2}{1-2x}=\frac{2x+1}{1-2x}\)
=.=, làm nhanh lẫn
a) \(=\frac{8xy}{3x-1}.\frac{5\left(3x-1\right)}{-12xy^3}\)
\(=\frac{-10}{3y^2}\)
Gọi \(A=x^2+y^2+xy-3x-3y-3\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)
\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)
Vậy GTNN của A là -6 tại x = y = 1
A= x2+y2+xy-3x-3y-3
\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy.............