cho hàm số y=(2m-1)x+m-3(m≠\(\dfrac{ }{ }\)\(\dfrac{1}{2}\)) và hàm số y=x-5.Tìm điều kiện để hai hàm số trên cắt nhau tại điểm có tung độ là -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi giá tiền 1 chiếc bánh ngọt ban đầu là $a$ (đồng). Giá từ cái bánh thứ 5 đổ đi là $0,9a$ đồng.
Giá tiền bạn Lan mua 44 cái bánh:
$[4a+0,9a(44-4)].0,95=684$
$\Leftrightarrow 40a=684:0,95=720$
$\Leftrightarrow a=18$ (nghìn đồng)
Số tiền bạn Lan trả nếu chưa được giảm thêm 5%:
$684:0,95=720$ (nghìn đồng)
\(\text{Δ}=\left(m-1\right)^2-4\left(m-2\right)\)
\(=m^2-2m+1-4m+8\)
\(=m^2-6m+9=\left(m-3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>(m-3)^2>0
=>\(m-3\ne0\)
=>\(m\ne3\)
\(x^2-\left(m-1\right)x+m-2=0\)
=>\(x^2-\left(m-2\right)x-x+m-2=0\)
=>\(x\left(x-m+2\right)-\left(x-m+2\right)=0\)
=>\(\left(x-1\right)\left(x-m+2\right)=0\)
=>\(\left[{}\begin{matrix}x=1\\x=m-2\end{matrix}\right.\)
\(x_1^2+x_2=3\)
=>\(\left[{}\begin{matrix}1^2+\left(m-2\right)=3\\1+\left(m-2\right)^2=3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m-2=2\\\left(m-2\right)^2=2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=4\\m-2=\sqrt{2}\\m-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\left(nhận\right)\\m=\sqrt{2}+2\left(nhận\right)\\m=-\sqrt{2}+2\left(nhận\right)\end{matrix}\right.\)
a: Phương trình hoành độ giao điểm là:
\(x^2=\left(m+2\right)x-m-1\)
=>\(x^2-\left(m+2\right)x+m+1=0\)(1)
\(\text{Δ}=\left[-\left(m+2\right)\right]^2-4\cdot1\left(m+1\right)\)
\(=m^2+4m+4-4m-4=m^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>\(m^2>0\)
=>\(m\ne0\)
b: Khi m<>0 thì phương trình (1) sẽ có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{\left(m+2\right)-\sqrt{m^2}}{2}=\dfrac{m+2-m}{2}=\dfrac{2}{2}=1\\x=\dfrac{\left(m+2\right)+\sqrt{m^2}}{2}=\dfrac{m+2+m}{2}=\dfrac{2m+2}{2}=m+1\end{matrix}\right.\)
\(\dfrac{1}{\left|x_1\right|}+\dfrac{1}{\left|x_2\right|}=2\)
=>\(\dfrac{1}{\left|m+1\right|}+\dfrac{1}{\left|1\right|}=2\)
=>\(\dfrac{1}{\left|m+1\right|}=1\)
=>|m+1|=1
=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=0\left(loại\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)
Giải:
Gọi chiều dài là \(x\) (m); \(x\) > 0
Nửa chu vi của hình chữ nhật là: 340 : 2 = 170 (m)
Chiều rộng của hình chữ nhật là: 170 - \(x\) (m)
Ba lần chiều dài của hình chữ nhật là: \(x\times\) 3 = 3\(x\) (m)
Bốn lần chiều rộng của hình chữ nhật là: (170 - \(x\)) \(\times\) 4 = 680 - 4\(x\)(m)
Theo bài ra ta có phương trình:
3\(x\) - (680 - 4\(x\)) = 20
3\(x\) - 680 + 4\(x\) = 20
7\(x\) - 680 = 20
7\(x\) = 20 + 680
7\(x\) = 700
\(x\) = 700 : 7
\(x\) = 100
Vậy chiều dài của hình chữ nhật là: 100 m
Chiều rộng của hình chữ nhật là: 170 - 100 = 70 (m)
Kết luận: Chiều dài của hình chữ nhật là 100 m
Chiều rộng của hình chữ nhật là 70 m
Gọi chiều rộng của mảnh đất là x (m) với x>0
Chiều dài của mảnh đất là: \(x+4\) (m)
Diện tích mảnh đất là: \(x\left(x+4\right)\) (m)
Do diện tích mảnh đất là 285 \(m^2\) nên ta có pt:
\(x\left(x+4\right)=285\)
\(\Leftrightarrow x^2+4x-285=0\Rightarrow\left[{}\begin{matrix}x=15\\x=-19< 0\left(loại\right)\end{matrix}\right.\)
Vậy chiều rộng mảnh đất là 15m, chiều dài là \(15+4=19\)m
Chu vi mảnh đất là: \(\left(15+19\right).2=68\left(m\right)\)
a: Xét tứ giác AOBM có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
nên AOBM là tứ giác nội tiếp
b: Xét ΔAOM vuông tại A có \(sinAMO=\dfrac{AO}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
DO đó: MA=MB và MO là phân giác của góc AMB
MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)
AOBM nội tiếp
=>\(\widehat{AOB}+\widehat{AMB}=180^0\)
=>\(\widehat{AOB}=120^0\)
Độ dài đường tròn (O) là:
\(C=2\cdot5\cdot3,14=31,4\left(cm\right)\)
Diện tích hình quạt tròn ứng với cung nhỏ AB là:
\(S_{q\left(AB\right)}=\Omega\cdot5^2\cdot\dfrac{120}{360}=5^2\cdot\dfrac{3.14}{3}=\dfrac{157}{6}\left(cm^2\right)\)
c: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: OM là phân giác của góc AOB
=>\(\widehat{AOM}=\widehat{BOM}=\dfrac{120^0}{2}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>AC=OC=OA=R
Xét ΔOCB có OC=OB và \(\widehat{COB}=60^0\)
nên ΔOCB đều
=>OC=CB=OB=R
Xét tứ giác OACB có
OA=AC=CB=OB
nên OACB là hình thoi
Giải:
Câu a tự làm
b; Phương trình hoành độ giao điểm của (p) và (d) là:
\(x^2\) = - 2\(x\) + 3
\(x^2\) + 2\(x\) - 3 = 0
a + b + c = 1 + 2 - 3 = 0
Vậy phương trình có hai nghiệm phân biệt lần lượt là:
\(x_1\) = 1; \(x_2\) = - 3
\(x_1\) = 1 ⇒ y1 = 12 = 1; \(x_2\) = - 3 ⇒ y2 = (\(x_2\))2 = (- 3)2 = 9
Vậy (p) cắt (d) tại hai điểm A; B lần lượt có tọa độ là:
A(1; 1); B(-3; 9)
Lời giải:
Để 2 đths cắt nhau thì $2m-1\neq 1\Leftrightarrow m\neq 1$
PT hoành độ giao điểm:
$(2m-1)x+m-3=x-5$
$\Leftrightarrow (2m-2)x=-(m+2)$
$\Leftrightarrow x=\frac{-(m+2)}{2m-2}$ ($m\neq 1$)
Khi đó:
$y=x-5=\frac{-(m+2)}{2m-2}-5$
Để 2 đths cắt nhau tại điểm có tung độ -3 thì:
$y=\frac{-(m+2)}{2m-2}-5=-3$
$\Leftrightarrow \frac{-(m+2)}{2m-2}=2$
$\Rightarrow -(m+2)=4m-4$
$\Leftrightarrow 5m=2$
$\Leftrightarrow m=\frac{2}{5}$ (tm)