làm và giải thích vì sao điền vào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(sin^2x+cos^2x=1\)
=>\(cos^2x=1-\left(\dfrac{2}{3}\right)^2=1-\dfrac{4}{9}=\dfrac{5}{9}\)
mà \(cosx>0\)(Vì \(x\in\left(0;\dfrac{\Omega}{2}\right)\))
nên \(cosx=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)

Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{AB}{sin40}=\dfrac{8}{sin50}\)
=>\(AB=8\cdot\dfrac{sin40}{sin50}\simeq6,71\left(cm\right)\)
Xét ΔABC có \(\widehat{B}+\widehat{C}=50^0+40^0=90^0\)
nên ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\simeq\dfrac{1}{2}\cdot8\cdot6,71=26,84\left(cm^2\right)\)
Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)
=>\(2R=\dfrac{6.71}{sin40}\simeq10,44\)
=>\(R\simeq5,22\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{8^2+6,71^2}\simeq10,44\left(cm\right)\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{6,71+8+10,44}{2}\simeq12,6\left(cm\right)\)
\(r=\dfrac{S}{p}=\dfrac{26.84}{12,6}\simeq2,13\left(cm\right)\)

Dưới đây là các tập hợp A, B, và C được viết bằng cách nêu tính chất đặc trưng:
a) Tập hợp A: A = {x | x = n^2 - 1, n ∈ {1, 2, 3, 4, 5, 6}}
b) Tập hợp B: B = {x | x = 5k - 4, k ∈ ℤ}
c) Tập hợp C: C = {x | x = 2n + 1, n ∈ {0, 1, 2}} ∪ {x | x = -2}
Giải:
a; Xét dãy số: 0; 3; 8; 15; 24; 35
st1 = 0 = 0.2 = (1 - 1).(1 + 1)
st2 = 3 = 1.3 = (2 - 1).(2 + 1)
st3 = 8 = 2.4 = (3 - 1).(3 + 1)
st4 = 15 = 3.5 = (4 - 1).(4 + 1)
st5 = 24 = 4.6 = (5 - 1).(5 + 1)
st6 = 35 = 5.7 = (6 - 1.).(6 + 1)
..................
stn = (n - 1).(n + 1)
A = {(n -1).(n +1)/ 6 ≥ n \(\in\) N*}

Chúc mừng các bạn đã có tên trên danh sách nha. Chúc các bạn càng cố gắng thêm để đạt nhiều thành tích như vậy hơn nữa. Qua cuộc thi này, em xin cảm ơn các thầy cô đã tổ chức cuộc thi này. Đây là một cuộc thi ý nghĩa và giúp chúng ta hiểu biết thêm về năng khiếu của mình, còn giúp lan toả trang học bổ ích đến nhiều bạn học sinh trên toàn quốc. Cũng nhờ cuộc thi này mà em đã học hỏi được rất nhiều. Em rất vui mừng với kết quả này, và em cảm thấy bản thân mình cần phải cố gắng hơn nữa. Em mong rằng các thầy cô sẽ tạo thêm những cuộc thi bổ ích như vậy nữa.