phân tích đa thức thành nhân tử:
4x mũ 2 - 12xy + 9y mũ 2
x mũ 3 - y mũ 6
x mũ 6 - 6x mũ 4 +12x mũ 2 - 8
(x mũ 2 +4y mũ 2 -5) mũ 2 - 16(x mũ 2 . y mũ 2 + 2xy +1)
(a+b) mũ 3 - (a mũ 3 + b mũ 3)
mik đang cần gấp , ai đó giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích ? -.-
100x2 - ( x2 + 25 )2
= ( 10x )2 - ( x2 + 25 )2
= [ 10x - ( x2 + 25 ) ][ 10x + ( x2 + 25 ) ]
= ( 10x - x2 - 25 )( 10x + x2 + 25 )
= -( x2 - 10x + 25 )( x2 + 10x + 25 )
= -( x2 - 2.x.5 + 52 )( x2 + 2.x.5 + 52 )
= -( x - 5 )2( x + 5 )2
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4-4x\right).\left(x^2+4+4x\right)\)
\(=\left(x-2\right)^2.\left(x+2\right)^2=\left(x^2-4\right)^2\)
Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được
\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)
Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)
Cách trâu bò :
Ta có :
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)
+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)
\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)
Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức :
\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)
\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(đpcm\right)\)
Bất đẳng thức được chứng minh
Áp dụng BĐT Bunhiacopxki dạng cộng mẫu:
\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)
\(=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi: \(a=b=c\)
A = | x - 2012 | + | x - 2013 |
= | x - 2012 | + | -( x - 2013 ) |
= | x - 2012 | + | 2013 - x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
A = | x - 2012 | + | 2013 - x | ≥ | x - 2012 + 2013 - x | = | 1 | = 1
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 2012 )( 2013 - x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\Leftrightarrow2012\le x\le2013\)
2. \(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\Rightarrow\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\)( loại )
=> MinA = 1 <=> 2012 ≤ x ≤ 2013
Bg
Ta có: A = |x - 2012| + |x - 2013| (x thuộc R)
Mà |x - 2012| > 0 và |x - 2013| > 0
Để A đạt GTNN thì |x - 2012| = 0 hoặc |x - 2013| = 0
=> x - 2012 = 0 hoặc x - 2013 = 0
=> x = 2012 hoặc x = 2013
Với x = 2012 hoặc x = 2013 thì A luôn = 1
Vậy x = 2012 hoặc x = 2013 thì A = 1
a, \(x^2-4x+3=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
TH1 : x = 3 ; TH2 : x = 1
b, \(2x^2-3x-2=0\Leftrightarrow\left(x-2\right)\left(x+\frac{1}{2}\right)=0\)
TH1 : x = 2 ; TH2 : x = -1/2
c, Đặt \(x^2=t\left(t\ge0\right)\)
\(t^2+2t-8=0\Leftrightarrow\left(t-2\right)\left(t+4\right)=0\)
TH1 : t = 2 ; TH2 : t = -4
Tương tự ...
1a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x( x - 1 ) - 3( x - 1 )
= ( x - 1 )( x - 3 )
2c)
2x2 - 3x - 2 = 2x2 + x - 4x - 2
= x( 2x +1 ) - 2( 2x + 1 )
= ( 2x + 1 )( x - 2 )
3e)
x4 + 2x2 - 8 (*)
Đặt t = x2
(*) <=> t2 + 2t - 8
= t2 - 2t + 4t - 8
= t( t - 2 ) + 4( t - 2 )
= ( t - 2 )( t + 4 )
= ( x2 - 2 )( x2 + 4 )
4b) x2 + 4x - 12 = x2 - 2x + 6x - 12
= x( x - 2 ) + 6( x - 2 )
= ( x - 2 )( x + 6 )
d) 2x3 + x - 2x2 - 1 = 2x2( x - 1 ) + 1( x - 1 )
= ( x - 1 )( 2x2 + 1 )
f) x2 - 2xy - 3y2 = ( x2 - 2xy + y2 ) - 4y2
= ( x - y )2 - ( 2y )2
= ( x - y - 2y )( x - y + 2y )
= ( x - 3y )( x + y )
Đề bài này phải là tìm nghiệm nguyên dương thôi, chứ nghiệm âm thì chắc chắn không được
a) Nhận xét:
Với x lẻ: \(19^x\equiv-1\left(mod.5\right)\)
Với x chẵn: \(19^x\equiv1\left(mod.5\right)\)
=> \(19^x\equiv\pm1\left(mod.5\right)\) với mọi x nguyên dương
\(2023\equiv3\left(mod.5\right)\)
Lại có: \(\hept{\begin{cases}5^y\equiv0\left(mod.5\right)\\1890\equiv0\left(mod.5\right)\\1945^{4^{20}}\equiv\left(mod.5\right)\end{cases}}\)
=> \(\hept{\begin{cases}19^x+5^y+1890\equiv\pm1\left(mod.5\right)\\1945^{4^{20}}+2023\equiv3\left(mod.5\right)\end{cases}}\)
Mà VP = VT => vô lý
=> Phương trình vô nghiệm
Đợi xí làm nốt b
b) Áp dụng định lý Fermat dưới dạng tổng quát: \(a^n\equiv a\left(mod.n\right)\) thì ta có:
\(x^5\equiv x\left(mod.5\right)\) ; \(y^5\equiv y\left(mod.5\right)\) ; \(\left(x-3\right)^5\equiv x-3\left(mod.5\right)\)
và \(\left(y+2\right)^5\equiv y+2\left(mod.5\right)\)
Cộng vế lại ta được:
\(\hept{\begin{cases}x^5+y^5+2\equiv x+y+2\left(mod.5\right)\\\left(x-3\right)^5+\left(y+2\right)^5\equiv x+y-1\left(mod.5\right)\end{cases}}\)
Mà \(x^5+y^5+2=\left(x-3\right)^5+\left(y+2\right)^5\) => vô lý
Vậy PT vô nghiệm
Hình như đây là CĐ PT vô nghiệm
Bài giải
Ta dựng các tam giác đều AMP , AMN , ACE , ABD , suy ra N,P,E,D cố định.
Dễ dàng chứng minh được ΔAPE=ΔAMC(c.g.c)
⇒ MC = PE, AM = MP
Suy ra : AM + MC + BM = BM + MP + PE ≥ BE ( hằng số )
Tương tự , ta cũng chứng minh được AM = MN, BM = DN
⇒ AM + MC + MB = CM + MN + DN ≥ CD ( hằng số )
Suy ra MA + MB + MC đạt giá trị nhỏ nhất khi M là giao điểm của BE và CD.
Cần chú ý : Vì điều kiện các góc của tam giác nhỏ hơn 180 độ :
\(\widehat{BAC}+\widehat{CAE}\) < 120o + 60o = 180o
\(\widehat{BAC}+\widehat{BAD}\) < 120o + 60o = 180o
nên BE cắt AC tại một điểm nằm giữa A và C , CD cắt AB tại một điểm nằm giữa A và B. Do đó tồn tại giao điểm M của CD và BE.
Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow x^2+y^2+z^2+2.\left(xy+yz+zx\right)\ge xy+yz+zx+2.\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3.\left(xy+yz+zx\right)\)
\(\Leftrightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=2\)
Hay : \(B\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy \(GTLN\) của \(B=3\) khi \(x=y=z=1\)
Ta có bất đẳng thức sau : \(xy+yz+zx\le x^2+y^2+z^2\)
\(< =>2\left(xy+yz+zx\right)\le2\left(x^2+y^2+z^2\right)\)
\(< =>2xy+2yz+2zx\le2x^2+2y^2+2z^2\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Khi đó ta được bất đăng thức \(xy+yz+zx\le x^2+y^2+z^2\)
\(< =>3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2=3^2=9\)
\(< =>xy+yz+zx\le\frac{9}{3}=3\) Tương đương \(B\le3\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy GTLN của B = 3 đạt được khi x = y = z = 1
1/ \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2.3xy+\left(3y\right)^2\)
\(=\left(2x-3y\right)^2\)
2/ \(x^3-y^6=x^3-\left(y^2\right)^3\)
\(=\left(x-y^2\right)\left(x^2+xy^2+y^4\right)\)
Làm tạm 2 phần đợi mik xíu
4x2 - 12xy + 9y2 = ( 2x )2 - 2.2x.3y + ( 3y )2 = ( 2x - 3y )2
x3 - y6 = x3 - ( y2 )3 = ( x - y2 )( x2 + xy2 + y4 )
x6 - 6x4 + 12x2 - 8 = ( x2 )3 - 3.(x2)2.2 + 3.x2.22 - 23 = ( x2 - 2 )3
( x2 + 4y2 - 5 )2 - 16( x2y2 + 2xy + 1 ) = ( x2 + 4y2 - 5 )2 - 42( xy + 1 )2
= ( x2 + 4y2 - 5 )2 - ( 4xy + 4 )2
= [ ( x2 + 4y2 - 5 ) - ( 4xy + 4 ) ][ ( x2 + 4y2 - 5 ) + ( 4xy + 4 ) ]
= ( x2 + 4y2 - 5 - 4xy - 4 )( x2 + 4y2 - 5 + 4xy + 4 )
= [ ( x2 - 4xy + 4y2 ) - 9 ][ ( x2 + 4xy + 4y2 ) - 1 ]
= [ ( x - 2y )2 - 32 ][ ( x + 2y )2 - 12 ]
= ( x - 2y - 3 )( x - 2y + 3 )( x + 2y - 1 )( x + 2y + 1 )
( a + b )3 - ( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3 - a3 - b3
= 3a2b + 3ab2
= 3ab( a + b )